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Equations for 1D fluid flow through the male urethra

at + qx = 0,

qt +
“
q2

a
+ a2

2ρβ

”
x

= a
ρ

“
a0
β

”
x

+ a2

2ρβ2 βx −
q2

4a2

q
π
a
λ(Re),

(1)

I a = a(x, t) . . . cross section of the tube
I q = q(x, t) . . . the flow rate in the concrete place (q = av, where v = v(x, t) is flow velocity)
I a0 = a0(x), β = β(x) . . . cross section under zero pressure and tube compliance
I λ(Re) . . . the Mooney-Darcy friction factor (λ(Re) = 64/Re for the laminar flow)
I Re . . . Reynolds number

Constitutive relation between the pressure and the cross section of the tube

p =
a− a0

β
+ pe, (2)

where pe is surrounding pressure.
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Finite volume discretization

We have the system in conservation nonhomogeneous form

ut + [f(u, x)]x = ψ(u, x) (3)

For the following consideration, we reformulate this problem to the nonconservative homogeneous
form.

Nonconservative problem

ut + A(u)ux = 0, x ∈ R, t ∈ (0, T ), (4)

u(x, 0) = u0(x), x ∈ R,

The numerical high-resolution scheme for solving problems (4) can be written in fluctuation form

∂Uj

∂t
= −

1

∆x
[A−(U−

j+1/2
,U+

j+1/2
) + A(U−

j+1/2
,U+

j−1/2
) + A+(U−

j−1/2
,U+

j−1/2
)], (5)

where A±(U−
j+1/2

,U+
j+1/2

) are so called fluctuations. They can be defined by the sum of waves
moving to the right or to the left. The directions are dependent on the signs of the speeds of these
waves, which are related to the eigenvalues of matrix A(u).
U+
j+1/2

and U−
j+1/2

are reconstructed values represent the approximations of limit values at the
points xj+1/2.
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Reconstruction

The reconstruction can be applied to each component of u. But this approach does not work well
in general. It is better to apply the reconstruction to the characteristic field of u. It means that each
jump is decomposed to the eigenvectors r of Jacobian matrix A(u).

Uj+1 −Uj =
mX
p=1

αp
j+1/2

rp
j+1/2

. (6)

Arbitrary reconstruction ENO, WENO, ... the reconstruction based on minmod function can be
defined by following

U+
j+1/2

= Uj+1 +
X
p

φp,+
I+1/2

αp
j+1/2

rp
j+1/2

, (7)

U−
j+1/2

= Uj +
X
p

φp,−
I+1/2

αp
j+1/2

rp
j+1/2

,

where
φp,±
I+1/2

= ∓
1

2

“
1 + sgn(θp

I+1/2
)
”

min(1, |θp
I+1/2

|) (8)

I =

(
j − 1/2, if sp

j+1/2
≥ 0,

j + 3/2, if sp
j+1/2

< 0.
(9)

The function θp
j+1/2

can be determined by the following way

θp
j+1/2

=
αp
j+1/2

rp
j+1/2

· rp
I+1/2

αp
I+1/2

rp
I+1/2

· rp
I+1/2

. (10)
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Augmented system

Extension of the system by other equations. The advantage of this step is in the conversion of the
nonhomogeneous system to the homogeneous one.
Augmented vector of unknown functions is then w = [a, q, a0

β
, β]T . Furthermore we formally

augment this system by adding components of the flux function f(u) to the vector of the unknown
functions. We multiply balance law by Jacobian matrix f ′(u) and obtain following relation

f ′(u)ut + f ′(u)[f(u)]x = f ′(u)ψ(u, x). (11)

Because of f ′(u)ut = [f(u)]t we obtain hyperbolic system for the flux function

[f(u)]t + f ′(u)[f(u)]x = f ′(u)ψ(u, x). (12)

In the case of the urethra fluid flow modelling we add only one equation for the second component
of the flux function i.e. φ = av2 + a2

2ρβ
(the first component q is unknown function of the original

balance law), which has the form

φt + (−v2 +
a

2ρβ
)(av)x + 2vφx −

2av

ρ

„
a0

β

«
x

−
a2v

ρβ2
βx = 0. (13)
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Augmented system

Finally augmented system can be written in the nonconservative form

266664
a
q
φ
a0
β

β

377775
t

+

2666664
0 1 0 0 0

− q
2

a2
+ a
ρβ

2 q
a

0 −a
ρ
− a2

ρβ2

0 − q
2

a2
+ a
ρβ

2 q
a

2 q
ρ
− aq
ρβ2

0 0 0 0 0
0 0 0 0 0

3777775
266664

a
q
φ
a0
β

β

377775
x

= 0, (14)

briefly wt + B(w)wx = 0, where matrix B(w) has following eigenvalues

λ1 = v −
r

a

ρβ
, λ2 = v +

r
a

ρβ
, λ3 = 2v, λ4 = λ5 = 0 (15)

and corresponding eigenvectors

r1 =

26664
1
λ1

(λ1)2

0
0

37775, r2 =

26664
1
λ2

(λ2)2

0
0

37775, r3 =

26664
0
0
1
0
0

37775, r4 =

266664
−a

ρλ1λ2

0
a
ρ

1
0

377775, r5 =

2666664
−a2

ρβ2λ1λ2

0
a2

2ρβ2

0
1

3777775. (16)
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General steady state

General steady state ut = 0, therefore [f(u)]x = ψ(u, x). In the concrete at = 0, qt = 0.

qx = 0,„
q2

a
+

a2

2ρβ

«
x

=
a

ρ

„
a0

β

«
x

+
a2

2ρβ2
βx. (17)

It can be derived „
−v2 +

a

ρβ

«
ax =

a

ρ

„
a0

β

«
x

+
a2

ρβ2
βx. (18)

Bernoulli equation „
v2

2
+
a− a0

ρβ

«
x

= 0. (19)

Discrete form „
V 2

2
+
A−A0

ρβ

«
j

=

„
V 2

2
+
A−A0

ρβ

«
j+1

. (20)
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General steady state

The steady state for the augmented system means B(w)wx = 0, therefore wx is a linear
combination of the eigenvectors corresponding to the zero eigenvalues. The discrete form of the
vector ∆w corresponds to the certain approximation of these eigenvectors.

∆

266664
A
Q
Φ
a0
β

β

377775 =

2666664
Ā
ρ

1

λ1λ2

0
Ā
ρ
λ̃1λ2

λ1λ2

1
0

3777775∆

„
a0

β

«
+

26666664

Ā2

ρβj+1βj

1

λ1λ2

0
Ā2

ρβj+1βj

λ̃1λ2

λ1λ2
− Ã2

2ρβj+1βj

0
1

37777775∆β, (21)

where Ā =
Aj+Aj+1

2
, β̄ =

βj+βj+1
2

, Ã2 =
A2

j +A2
j+1

2
, Ṽ 2 = |VjVj+1|, V̄ 2 =

“
Vj+Vj+1

2

”2
and

λ̃1λ2 = −Ṽ 2 +
Āβ̄

ρβj+1βj
, λ1λ2 = −V̄ 2 +

Āβ̄

ρβj+1βj
. (22)

Therefore we use vectors on the RHS of (21) as approximations of the fourth and fifth eigenvectors
of the matrix B(w) to preserve general steady state.
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Augmented system method

Eigenvectors matrix R̃ = [̃r1, r̃2, r̃3, r̃4, r̃5]

R̃ =

26666664
1 1 0 Ā

ρ
1

λ1λ2
Ā2

ρβj+1βj

1

λ1λ2

λ1 λ2 0 0 0

(λ1)2 (λ2)2 1 Ā
ρ
λ̃1λ2

λ1λ2
Ā2

ρβj+1βj

λ̃1λ2

λ1λ2
− Ã2

2ρβj+1βj

0 0 0 1 0
0 0 0 0 1

37777775 . (23)

where the approximation of eigenvalues of the B(w) are replaced by Einfeld speeds

s1ε = min
p

min
n
λpj , λ

p
j+1/2

o
, s2ε = max

p
max

n
λpj+1, λ

p
j+1/2

o
,

s3ε = s1ε + s2ε, s4ε = 0, s5ε = 0.
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Augmented system method - Positive semidefiniteness

Eigenvectors matrix R̃ = [̃r1, r̃2, r̃3, r̃4, r̃5]

R̃ =

26666664
1 1 0 Ā

ρ
1

λ1λ2
Ā2

ρβj+1βj

1

λ1λ2

s1ε s2ε 0 0 0

(s1ε)
2 (s2ε)

2 1 Ā
ρ
λ̃1λ2

λ1λ2
Ā2

ρβj+1βj

λ̃1λ2

λ1λ2
− Ã2

2ρβj+1βj

0 0 0 1 0
0 0 0 0 1

37777775 , (24)

where the approximation of eigenvalues of the B(w) are replaced by Einfeld speeds

s1ε = min
p

min
n
λpj , λ

p
j+1/2

o
, s2ε = max

p
max

n
λpj+1, λ

p
j+1/2

o
,

s3ε = s1ε + s2ε, s4ε = 0, s5ε = 0. (25)

The other necessary assumptions to the approximations of the eigenvectors.
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Numerical scheme

We have five linearly independent eigenvectors. The approximation is chosen to be able to prove
the consistency and provide the stability of the algorithm. In some special cases this scheme is
conservative and we can guarantee the positive semidefiniteness, but only under the additional
assumptions.
The fluctuations are then defined by

A−(U−
j+1/2

,U+
j+1/2

) =

»
0 1 0 0 1
0 1 0 0 1

–
·

mX
p=1,s

p,n
j+1/2<0

γp
j+1/2

rp
j+1/2

,

A+(U−
j+1/2

,U+
j+1/2

) =

»
0 1 0 0 1
0 1 0 0 1

–
·

mX
p=1,s

p,n
j+1/2>0

γp
j+1/2

rp
j+1/2

,

A(U+
j−1/2

,U−
j+1/2

) = f(U−
j+1/2

)− f(U+
j−1/2

)−Ψ(U−
j+1/2

,U+
j−1/2

),

(26)

where Ψ(U−
j+1/2

,U+
j−1/2

) is a suitable approximation of the source term and rp
j+1/2

are suitable
approximations of the eigenvectors (16).
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Urethra flow

Initial condition:

p(x, 0) =


3000 [Pa], pro x = 0
500 [Pa], jinak, , v(x, 0) =


1 [m/s], pro x = 0
0 [m/s], jinak,

Boundary condition:
q(0, t) = konst.
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Urethra flow - unsteady

Initial condition:

p(x, 0) =


3000 [Pa], pro x = 0
500 [Pa], jinak, , v(x, 0) =


1 [m/s], pro x = 0
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Boundary condition:
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Bladder contraction

Mechano-chemical coupling of the smooth muscle cell contraction.
The product of the chemical reaction affinity (the ATP hydrolysis) with its rate plays an important
role in the discussed model (sliding between actin and myosin). Further it can be assumed that
the rate of the ATP hydrolysis depends on the ATP consumption.
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Ca+
2 dynamics

dc

dt
= JIP3 − JV OCC + JNa/Ca − JSRuptake + JCICR − Jextrusion + Jleak + 0.1Jstretch

Rate of change calcium concentration in cytoplasm - cation release from the IP3 (sensitive
reservoir), flow of calcium through the membrane, flow the mechanical-sensitive channels,...

ds

dt
= JSRuptake − JCICR − Jleak

Rate of change calcium concentration in ER/SR.

dv

dt
= γ(−JNa/K − JCl − 2JV OCC − JNa/Ca − JK − Jstretch)

Rate of change of membrane tension - flow Na+/K+, chloride flow,potassium flow,...

dw

dt
= λKactivate

Rate of change of probability of opening channels activated by Ca+
2 - activation of K+ channels.

dI

dt
= Jagonist − Jdegrad

Rate of change IP3 concentration in cytoplasm
Simulation of fluid flow in lower urinary tract PANM 16, 3.6. – 8.6. 2012 19 / 25
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Isotonic contraction

Mechano-chemical coupling of the smooth muscle cell contraction

dx

dt
= k1 (τ − z(x− 1)) ,

dy

dt
=

y

k2

„
xτ −

1

2
z(x− 1)2 + C′

«
,

dz

dt
= sgn(m)

„
r −

1

2
z(x− 1)2

«
.

Volume of the bladder
V = κ(xy)3.
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Model of phosphorilation of light myosin chain

The muscle cell contraction is caused by the relative movement of the myosin and actin filaments

dAM

dt
= k5AMp − (k7 + k6)AM ,

dAMp

dt
= k3Mp + k6AM − (k4 + k5)AMp ,

dMp

dt
= k1(1−AM ) + (k4 − k1)AMp − (k1 + k2 + k3)Mp,

dY

dt
= −QaY + LJcycle.

Y ... ATP concentration
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Interconnection variables

The bladder pressure

p =
Vsh

3V
τ,

τ ... tension in the fiber
Vsh... volume of the bladder wall
V ... internal volume
The outflow from the bladder

q =
dV

dt
,

τ =

−q
3κ(x·y)2

+
h
k1zy(x− 1) + zyx

2k2
(x− 1)2 − xy

k2
C′
i

k1y + x2y
k2

. (27)
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Mathematical model

System of ordinary differential equations
I 12 equations describing the bladder model and the detrusor contraction during voiding
I 2J equations of urethra flow, where J is the number of finite volumes which divide the urethra

region

Properties of the method describing urethra flow
I preserving general steady states
I positive semidefiniteness
I high order of accuracy
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Numerical experiment - quantities at the bladder neck

pressure outflow

mediator flux Ca++ concentration
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Conclusion

I complex model of the voiding
I high resolution discretization with preserving general steady state
I properties of the results?
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