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Application of the STDFEM to compressible flow

Goal: to work out a sufficiently accurate, robust and theoretically
based method for the numerical solution of compressible flow with
a wide range of Mach numbers and Reynolds numbers

Difficulties:
nonlinear convection dominating over diffusion =⇒
– boundary layers, wakes for large Reynolds numbers
– shock waves, contact discontinuities for large Mach numbers
– instabilities caused by acoustic effects for low Mach numbers
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Application of the STDFEM to compressible flow

One of promising, efficient methods for the solution of compressible
flow is the discontinuous Galerkin finite element method (DGFEM)
using piecewise polynomial approximation of a sought solution
without any requirement on the continuity between neighbouring
elements.
– Reed&Hill 1973, LeSaint&Raviart 1974,
Johnson&Pitkäranta 1986
– Cockburn&Shu 1989, Bassi&Rebay, Baumann&Oden 1997, ...
Hartmann, Houston, ... van der Vegt, ... M.F., Dolejší, Kučera
– theory for elliptic or parabolic problems: Arnold, Brezzi, Marini,
et al, Schwab, Suli,..., Wheeler, Girault, Riviere, ...
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Application of the STDFEM to compressible flow

– theory for nonstationary (nonlinear) convection-diffusion problems
Prague school:
M.F., Dolejší, Sobotíková, Kučera, Vlasák
Švadlenka, Hájek, Česenek, Hozman, Holík, Hasnedlová, Šebestová,
Hozman, Kosík, Hadrava ...
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Application of the STDFEM to compressible flow

Here:

- analysis of the DGFEM for the solution of a nonlinear
nonstationary convection-diffusion equation (= a simple prototype
of the compressible Navier-Stokes system)

- applications to the simulation of compressible flow
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Application of the STDFEM to compressible flow

Continuous model problem
Find u : QT = Ω × (0, T ) → IR such that

a)
∂u

∂t
+

2
∑

s=1

∂fs(u)

∂xs
− div(β(u)∇u)) = g in QT , (1)

b) u
∣

∣

∂Ω×(0,T )
= uD ,

c) u(x , 0) = u0(x), x ∈ Ω.

Ω ⊂ IRd , d = 2, 3 - a bounded polygonal (if d = 2) or polyhedral
(if d = 3) domain with Lipschitz-continuous boundary ∂Ω and
T > 0
g : QT → IR , uD : ∂Ω× (0, T ) → IR , u0 : Ω → IR - given functions,
fs ∈ C 1(IR), s = 1, . . . , d , - prescribed fluxes

β : IR → [β0, β1], 0 < β0 < β1 < ∞,

|β(u1) − β(u2)| ≤ L|u1 − u2|, ∀u1, u2 ∈ IR .
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Application of the STDFEM to compressible flow

DG space semidiscretization

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into
a finite number of closed triangles (d = 2) or tetrahedra (d = 3) K

with mutually disjoint interiors such that

Ω =
⋃

K∈Th

K . (2)

We call Th a triangulation of Ω and do not require the standard
conforming properties from the finite element method.
hK = diam (K ), h = maxK∈Th

hK , ρK = radius of the largest
ball inscribed into K

K , K ′ ∈ Th - neighbours - they have a common face
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Application of the STDFEM to compressible flow

Fh= the system of all faces of all elements K ∈ Th,
the set of all innner faces:

F I
h = {Γ ∈ Fh; Γ ⊂ Ω} , (3)

the set of all boundary faces:

FB
h = {Γ ∈ Fh; Γ ⊂ ∂Ω} , (4)

For each Γ ∈ Fh we define a unit normal vector nΓ.
For Γ ⊂ ∂Ω - nΓ = unit outer normal to ∂Ω.
d(Γ) = diameter of Γ ∈ Fh.
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Application of the STDFEM to compressible flow

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8

Elements with hanging nodes
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Application of the STDFEM to compressible flow

K
(L)
Γ

K
(R)
Γ

Γ

~nΓ

Neighbouring elements

For each face Γ ∈ F I
h there exist two neighbours

K
(L)
Γ , K

(R)
Γ ∈ Th such that Γ ⊂ ∂K

(L)
Γ ∩ ∂K

(R)
Γ .

nΓ is the outer normal to ∂K
(L)
Γ and the inner normal to

∂K
(R)
Γ .

If Γ ∈ FB
h , then K

(L)
Γ will denote the element adjacent to Γ.
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Application of the STDFEM to compressible flow

Let CW > 0 be a fixed constant. We set

h(Γ) =
h
K

(L)
Γ

+ h
K

(R)
Γ

2CW

for Γ ∈ F I
h, (5)

h(Γ) =
h
K

(L)
Γ

CW

for Γ ∈ FB
h .

Other possibility (if Th is conforming):

h(Γ) =
d(Γ)

CW

for Γ ∈ Fh. (6)
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Application of the STDFEM to compressible flow

DG spaces:

Broken Sobolev spaces:
Hk(Ω, Th) = {v ; v |K ∈ Hk(K ) ∀K ∈ Th}.

If v ∈ H1(Ω, Th) and Γ ∈ Fh, then

v
(L)
Γ , v

(R)
Γ = the traces of v on Γ from the side of elements

K
(L)
Γ , K

(R)
Γ adjacent to Γ

If Γ ∈ F I
h, then

〈v〉Γ = 1

2

(

v
(L)
Γ + v

(R)
Γ

)

, [v ]Γ = v
(L)
Γ − v

(R)
Γ .

The approximate solution – sought in the space of
discontinuous piecewise polynomial functions

S
p
h = {v ; v |K ∈ Pp(K ) ∀K ∈ Th},

p > 0 – integer, Pp(K ) – the space of all polynomials on K of
degree at most p.
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Application of the STDFEM to compressible flow

Derivation of the discrete problem

Assume that u – sufficiently regular exact solution
– multiply the PDE by any ϕ ∈ H2(Ω, Th)
– integrate over K ∈ Th

– apply Green’s theorem
– sum over all K ∈ Th

– add some terms mutually vanishing
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Application of the STDFEM to compressible flow

After some manipulation we obtain the identity
∫

Ω

∂u

∂t
ϕ dx (7)

+
∑

K∈Th

∑

Γ∈Fh
Γ⊂∂K

∫

Γ

d
∑

s=1

fs(u) (n∂K )s ϕ|Γ dS

−
∑

K∈Th

∫

K

d
∑

s=1

fs(u)
∂ϕ

∂xs
dx

+
∑

K∈Th

∫

K

β(u)∇u · ∇ϕ dx

−
∑

Γ∈F I
h

∫

Γ
〈β(u)∇u〉 · nΓ[ϕ] dS

−
∑

Γ∈FB
h

∫

Γ
β(u)∇u · nΓ ϕ dS =

∫

Ω
g ϕ dx .
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Application of the STDFEM to compressible flow

Forms

Forms
For u, v , ϕ ∈ H2(Ω, Th), we define the folowing forms:

Diffusion form
ah(v , u, ϕ) =

∑

K∈Th

∫

K

β(v)∇ u · ∇ϕ dx (8)

−
∑

Γ∈F I
h

∫

Γ
(〈β(v)∇u〉 · nΓ[ϕ] + θ〈β(v)∇ϕ〉 · nΓ [u]) dS

−
∑

Γ∈FB
h

∫

Γ
(β(v)∇u · nΓ ϕ

+θ β(v)∇ϕ · nΓ u − θβ(v)∇ϕ · nΓuD) dS

θ = −1, or θ = 0 or θ = 1 – the nonsymmetric (NIPG) or
incomplete (IIPG) or symmetric (SIPG) variants of the
approximation of the diffusion terms, respectively.
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Application of the STDFEM to compressible flow

Interior and boundary penalty

Jh(u, ϕ) =
∑

Γ∈F I
h

h(Γ)−1

∫

Γ
[u] [ϕ] dS

+
∑

Γ∈FB
h

h(Γ)−1

∫

Γ
u ϕ dS

Ah = ah + β0Jh, (9)

Right-hand side form

ℓh(ϕ) = (g , ϕ) + β0

∑

Γ∈FB
h

h(Γ)−1

∫

Γ
uD ϕ dS (10)
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Application of the STDFEM to compressible flow

Convection form

bh(u, ϕ) = −
∑

K∈Th

∫

K

2
∑

s=1

fs(u)
∂ϕ

∂xs
dx (11)

+
∑

Γ∈F I
h

∫

Γ
H
(

u
(L)
Γ , u

(R)
Γ ,nΓ

)

[ϕ] dS

+
∑

Γ∈FB
h

∫

Γ
H
(

u
(L)
Γ , u

(L)
Γ ,nΓ

)

ϕ dS

H – numerical flux with the following properties:
H(u, v ,n) is defined in IR2 × B1, where
B1 = {n ∈ IR2; |n| = 1}, and is Lipschitz-continuous with
respect to u, v .
H(u, v ,n) is consistent:

H(u, u,n) =
∑

2

s=1
fs(u) ns , u ∈ IR,n = (n1, n2) ∈ B1.

H(u, v ,n) is conservative:
H(u, v ,n) = −H(v , u,−n), u, v ∈ IR, n ∈ B1.
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Application of the STDFEM to compressible flow

The exact sufficiently regular solution u satisfies the identity
(

∂u(t)

∂t
, ϕh

)

+ bh(u(t), ϕh) + ah(u(t), u(t), ϕh)

+β0Jh(u(t), ϕh)=ℓh(ϕh) (t) for all ϕh ∈ S
p
h and for a.e. t ∈ (0, T ).

(·, ·) − L2(Ω)-scalar product
Discrete problem
We say that uh is a DG approximate solution of the
convection-diffusion problem (1), if

a) uh ∈ C 1([0, T ]; Sp
h ), (12)

b)

(

∂uh(t)

∂t
, ϕh

)

+ ah(uh(t), uh(t), ϕh) + bh(uh(t), ϕh) (13)

+β0Jh(uh(t), ϕh)=ℓh(ϕh) (t) ∀ϕh ∈ S
p
h , ∀ t ∈ (0, T ),

c) uh(0) = u0

h = S
p
h -approximation of u0.

Remark: Integrals are evaluated with the aid of numerical

integration.
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Application of the STDFEM to compressible flow

The discrete problem is equivalent to a large system of nonlinear
ordinary differential equations.
In practical computations: suitable time discretization is applied,
e.g.
– Euler forward or backward scheme, Crank-Nicolson
– Runge–Kutta methods,
The forward Euler and Runge-Kutta schemes are conditionally

stable – time step is strongly restricted by the CFL-stability

condition.
Suitable: semi-implicit scheme - leads to a linear algebraic system
on each time level
– discontinuous Galerkin time discretization
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Application of the STDFEM to compressible flow

Space-time DGM

M.F. & J. Česenek
Space-time DGM
Space-time discretization

Partition in the time interval [0, T ]: 0 = t0 < · · · < tM = T

denote Im = (tm−1, tm), τm = tm − tm−1,
τ = maxm=1,...,M τm.
For ϕ defined in

⋃M
m=1

Im we put
ϕ±

m = ϕ (tm±) = limt→tm± ϕ(t) (one-sided limits at time tm)
{ϕ}m = ϕ (tm+) − ϕ (tm−) (jump).
For each Im consider a partition Th,m of the closure Ω of the
domain Ω into a finite number of closed triangles with
mutually disjoint interiors.
The partitions Th,m are in general different for different m.
Fh,m – the system of all faces of all elements K ∈ Th,m

F I
h,m – the set of all inner faces

FB
h,m – the set of all boundary faces
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Application of the STDFEM to compressible flow

Each Γ ∈ Fh,m associated with a unit normal vector nΓ, which
has the same orientation as the outer normal to ∂Ω for
Γ ∈ FB

h,m

hK = diam(K ) for K ∈ Th,m,
hm = maxK∈Th,m

hK , h = maxm=1,...,M hm

ρK – the radius of the largest circle inscribed into K .
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Application of the STDFEM to compressible flow

K
(L)
Γ

K
(R)
Γ

Γ

~nΓ

Neighbouring elements

For each face Γ ∈ F I
h,m there exist two neighbours

K
(L)
Γ , K

(R)
Γ ∈ Th,m such that Γ ⊂ ∂K

(L)
Γ ∩ ∂K

(R)
Γ .

nΓ is the outer normal to ∂K
(L)
Γ and the inner normal to

∂K
(R)
Γ .

If Γ ∈ FB
h,m, then K

(L)
Γ will denote the element adjacent to Γ.
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Application of the STDFEM to compressible flow

Let CW > 0 be a fixed constant. We set

h(Γ) =
h
K

(L)
Γ

+ h
K

(R)
Γ

2CW

for Γ ∈ F I
h,m, (14)

h(Γ) =
h
K

(L)
Γ

CW

for Γ ∈ FB
h,m,

or

h(Γ) =
d(Γ)

CW

for Γ ∈ Fh,m. (15)
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Application of the STDFEM to compressible flow

DG spaces:

Broken Sobolev spaces:
Hk(Ω, Th,m) = {v ; v |K ∈ Hk(K ) ∀K ∈ Th,m}.

If v ∈ H1(Ω, Th,m) and Γ ∈ Fh,m, then

v
(L)
Γ , v

(R)
Γ = the traces of v on Γ from the side of elements

K
(L)
Γ , K

(R)
Γ adjacent to Γ

If Γ ∈ F I
h,m, then

〈v〉Γ = 1

2

(

v
(L)
Γ + v

(R)
Γ

)

, [v ]Γ = v
(L)
Γ − v

(R)
Γ .

Discrete spaces
Let p, q ≥ 1 be integers. For each m = 1, . . . ,M,

S
p

h,m =
{

ϕ ∈ L2(Ω);ϕ|K ∈ Pp(K ) ∀K ∈ Th,m

}

. (16)

The approximate solution is sought in the space

S
p,q

h,τ
=
{

ϕ ∈ L2(QT );ϕ
∣

∣

Im
=

q
∑

i=0

t i ϕi (17)

with ϕi ∈ S
p

h,m, m = 1, . . . ,M
}

.
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Application of the STDFEM to compressible flow

Forms

Forms
For u, v , ϕ ∈ H2(Ω, Th,m), we define the folowing forms:

Diffusion form
ah,m(v , u, ϕ) =

∑

K∈Th,m

∫

K

β(v)∇ u · ∇ϕ dx (18)

−
∑

Γ∈F I
h,m

∫

Γ
(〈β(v)∇u〉 · nΓ[ϕ] + θ〈β(v)∇ϕ〉 · nΓ [u]) dS

−
∑

Γ∈FB
h,m

∫

Γ
(β(v)∇u · nΓ ϕ

+θ β(v)∇ϕ · nΓ u − θβ(v)∇ϕ · nΓuD) dS

θ = −1, or θ = 0 or θ = 1 – the symmetric (SIPG) or
incomplete (IIPG) or nonsymmetric (NIPG) variants of the
approximation of the diffusion terms, respectively.
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Application of the STDFEM to compressible flow

Interior and boundary penalty

Jh,m(u, ϕ) =
∑

Γ∈F I
h,m

h(Γ)−1

∫

Γ
[u] [ϕ] dS

+
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ
u ϕ dS

Ah,m = ah,m + β0Jh,m, (19)

Right-hand side form

ℓh,m(ϕ) = (g , ϕ) + β0

∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ
uD ϕ dS (20)
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Application of the STDFEM to compressible flow

Convection form

bh,m(u, ϕ) = −
∑

K∈Th,m

∫

K

2
∑

s=1

fs(u)
∂ϕ

∂xs
dx (21)

+
∑

Γ∈F I
h,m

∫

Γ
H
(

u
(L)
Γ , u

(R)
Γ ,nΓ

)

[ϕ] dS

+
∑

Γ∈FB
h,m

∫

Γ
H
(

u
(L)
Γ , u

(L)
Γ ,nΓ

)

ϕ dS

H – numerical flux with the following properties:
H(u, v ,n) is defined in IR2 × B1, where
B1 = {n ∈ IR2; |n| = 1}, and is Lipschitz-continuous with
respect to u, v .
H(u, v ,n) is consistent:

H(u, u,n) =
∑

2

s=1
fs(u) ns , u ∈ IR,n = (n1, n2) ∈ B1.

H(u, v ,n) is conservative:
H(u, v ,n) = −H(v , u,−n), u, v ∈ IR, n ∈ B1.
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Application of the STDFEM to compressible flow

(·, ·) – the scalar product in L2(Ω),

‖ · ‖ – the norm in L2(Ω).

‖ϕ‖DG ,m =
(

∑

K∈Th,m
|ϕ|2

H1(K) + Jh,m(ϕ, ϕ)
)1/2

– norm in

H1(Ω, Th,m)
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Application of the STDFEM to compressible flow

Approximate solution:
notation: U ′ = ∂U/∂t, u′ = ∂u/∂t.
U ∈ S

p,q
h,τ such that

∫

Im

(

(U ′, ϕ) + Ah,m(U, U, ϕ) + bh,m(U, ϕ)
)

dt (22)

+
(

{U}m−1, ϕ
+
m−1

)

=

∫

Im

ℓh,m(ϕ) dt, ∀ϕ ∈ S
p,q
h,τ , m = 1, . . . ,M,

U−
0

= L2(Ω) − projection of u0 on S
p
h,1.

The exact regular solution u satisfies the identity
∫

Im

(

(u′, ϕ) + Ah,m(u, u, ϕ) + bh,m(u, ϕ)
)

dt (23)

+
(

{u}m−1, ϕ
+
m−1

)

=

∫

Im

ℓh,m(ϕ) dt ∀ϕ ∈ S
p,q
h,τ , with u(0−) = u0.
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Application of the STDFEM to compressible flow

Error analysis

Error analysis

The main goal: analysis of the estimation of the error
e = U − u

Πm – the L2(Ω)-projection on S
p
h,m.

S
p,q
h,τ -interpolation π of functions v ∈ H1(0, T ; L2(Ω)):

a) π v ∈ S
p,q
h,τ , b) (π v) (tm−) = Πm v(tm−), (24)

c)
∫

Im

(πv − v , ϕ∗) dt = 0 ∀ϕ∗ ∈ S
p,q−1

h,τ , ∀m = 1, . . . ,M.

e = U − u = ξ + η,
ξ = U − πu ∈ S

p,q
h,τ and η = πu − u
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Application of the STDFEM to compressible flow

=⇒ for each ϕ ∈ S
p,q
h,τ :

∫

Im

(

(ξ′, ϕ) + Ah,m(U, U, ϕ) − Ah,m(u, u, ϕ)
)

dt (25)

+
(

{ξm−1}, ϕ
+
m−1

)

=

∫

Im

(

bh,m(u, ϕ) − bh,m(U, ϕ)
)

dt

−

∫

Im

(η′, ϕ)dt −
(

{η}m−1, ϕ
+
m−1

)

.
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Application of the STDFEM to compressible flow

Derivation of an abstract error estimate

Consider a system of triangulations Th,m, m = 1, . . . ,M,
h ∈ (0, h0), shape regular and locally quasiuniform:

hK

ρK

≤ CR , ∀K ∈ Th,m, (26)

h
K

(L)
Γ

≤ CQ h
K

(R)
Γ

, h
K

(R)
Γ

≤ CQ h
K

(L)
Γ

∀ Γ ∈ F I
h,m.(27)
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Application of the STDFEM to compressible flow

Important tools in the analysis:

multiplicative trace inequality:

‖v‖2

L2(∂K) ≤ CM

(

‖v‖L2(K) |v |H1(K) + h−1

K ‖v‖2

L2(K)

)

, v ∈ H1(K ),

(28)

inverse inequality:

|v |H1(K) ≤ CIh
−1

K ‖v‖L2(K), v ∈ Pp(K ). (29)
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Application of the STDFEM to compressible flow

consistency of the form bh,m: for each k > 0 there exists a
constant C = C (k) such that

|bh,m(U, ϕ) − bh,m(u, ϕ)| (30)

≤
β0

k
‖ϕ‖2

DG ,m + C (‖ξ‖2 + ‖η‖2 +
∑

K∈Th,m

h2

K |η|
2

H1(K)).

coercivity of the diffusion form: Let

CW > 0, for θ = −1 (NIPG ), (31)

CW ≥

(

4β1

β0

)2

CMI for θ = 1 (SIPG ), (32)

CW ≥ 2
(

2β1

β0

)2

CMI for θ = 0 (IIPG ), (33)

where CMI = CM(CI + 1)(CQ + 1). Then

Ah,m(U, ξ, ξ) = ah,m(U, ξ, ξ) + β0Jh,m(ξ, ξ) ≥
β0

2
‖ξ‖2

DG ,m.(34)
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Application of the STDFEM to compressible flow

Let us substitute ϕ := ξ in (25). Then

∥

∥ξ−m
∥

∥

2
−
∥

∥ξ−m−1

∥

∥

2
+

β0

2

∫

Im

‖ξ‖2

DG,m dt (35)

≤ C

∫

Im

‖ξ‖2 dt + 4
∥

∥η−m−1

∥

∥

2
+ C

∫

Im

Rm(η) dt,

where

Rm(η) = ‖η‖2

DG ,m +‖η‖2 +
∑

K∈Th,m

(h2

K |η|
2

H1(K) +h2

K |η|
2

H2(K)). (36)

Necessary to estimate
∫

Im
‖ξ‖2 dt
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Derivation of the estimate of
∫

Im
‖ξ‖2 dt – rather technical

(I) The case β(u) = const > 0 analyzed by M.F., Kučera, Najzar
and Prokopová in Numer. Math. 2011, using the approach based
on the application of the so-called Gauss-Radau quadrature and
interpolation.
(II) However, in the case of nonlinear diffusion, this technique is not
applicable.
We use here the concept of the discrete characteristic functions to
the function ξ at points y ∈ Im: ξ̃y ∈ S

p,q
h,τ ,

∫

Im

(ξ̃y , ϕ)dt =

∫ y

tm−1

(ξ, ϕ)dt, ∀ϕ ∈ S
p,q−1

h,τ ξ̃y (t+
m−1

) = ξ(t+
m−1

).

The detailed analysis yields the estimate
∫

Im

‖ξ‖2 dt ≤ C τm

(

∥

∥ξ−m−1

∥

∥

2
+
∥

∥η−m−1

∥

∥

2
+

∫

Im

Rm(η) dt

)

.
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The derived estimates and the discrete Gronwall lemma yield the
abstract error estimate:
Theorem 1 There exists a constants C > 0 such that the error
e = U − u satisfies the estimate

‖e−m‖2 +
β0

2

m
∑

j=1

∫

Ij

‖e‖2

DG ,j dt (37)

≤ C





m
∑

j=1

‖η−j ‖
2 +

m
∑

j=1

∫

Ij

Rj(η) dt





+2‖η−m‖
2 + 2β0

m
∑

j=1

∫

Ij

‖η‖2

DG ,j dt, m = 1, . . . ,M.
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Error estimation in terms of h and τ

the abstract error estimate

estimation of terms containing η

the assumptions on the regularity of the exact solution

u ∈ Hq+1
(

0, T ; H1(Ω)
)

∩ C ([0, T ]; Hp+1(Ω)), (38)

the assumptions on the properties of the meshes: shape
regularity, quasiuniformity and

τm ≥ Ch2

m, m = 1, . . . ,M. (39)

approximation properties of operators Πm, π

If all meshes Th,m are identical, then condition (39) can be omitted.
=⇒ error estimates in terms of h and τ :
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Theorem 2 There exists a constant C > 0 such that

‖e−m‖2 +
ε

2

m
∑

j=1

∫

Im

‖e‖2

DG ,j dt (40)

≤ C
(

h2p|u|2C([0,T ];Hp+1(Ω)) + τ2q+α|u|Hq+1(0,T ;H1(Ω))

)

.

Here α = 2, if uD is a polynomial of degree ≤ q in t, otherwise
α = 0.
Further goals:
– derivation of optimal error estimates,
– demonstration of results by numerical experiments
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Compressible flow in a time-dependent domain - ALE

method

Flow in a bounded time-dependent domain Ωt ⊂ IR2, t ∈ [0, T ] -
formulated with the aid of the ALE method, based on the ALE
one-to-one regular mapping

At : Ω0 → Ωt , i.e. At : X ∈ Ω0 7→ x = x(X , t) ∈ Ωt .

Domain velocity:

z̃(X , t) =
∂

∂t
At(X ), t ∈ [0, T ], X ∈ Ω0, (41)

z(x , t) = z̃(A−1

t (x), t), t ∈ [0, T ], x ∈ Ωt

(z |ΓWt
= zD)
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Domain velocity, ALE derivative

ALE derivative of a function f = f (x , t) defined for
x ∈ Ωt , t ∈ [0, T ]:

DA

Dt
f (x , t) =

∂ f̃

∂t
(X , t)|

X=A
−1

t (x), (42)

where
f̃ (X , t) = f (At(X ), t), X ∈ Ω0.

It is possible to show that

DAf

Dt
=

∂f

∂t
+ z · grad f =

∂f

∂t
+ div(z f ) − f divz . (43)

=⇒ ALE formulation of the system describing compressible flow
consisting of the continuity equation, the Navier-Stokes equations,
the energy equation:
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ALE form of the governing equations

DAw

Dt
+

2
∑

s=1

∂g s(w)

∂xs
+ w divz =

2
∑

s=1

∂Rs(w ,∇w)

∂xs
, (44)

where

w = (w1, . . . ,w4)
T = (ρ, ρv1, ρv2, E )T ∈ IR4,

g s(w) = f s(w) − zsw ,

f s(w) = (ρvs , ρv1vs + δ1s p, ρv2vs + δ2s p, (E + p)vs)
T ,

Rs(w ,∇w) =
(

0, τV
s1, τ

V
s2, τ

V
s1 v1 + τV

s2 v2 + k∂θ/∂xs

)T

,

Rs(w ,∇w) =
2
∑

k=1

K sk(w)
∂w

∂xk

,

τV
ij = λ divv δij + 2µ dij(v), dij(v) = (∂vi/∂xj + ∂vj/∂xi ) /2
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Thermodynamical relations

p = (γ − 1)(E − ρ|v |2/2), θ =
(

E/ρ − |v |2/2
)

/cv .

Notation: ρ - density,
p - pressure,
E - total energy,
v = (v1, v2) - velocity,
θ - absolute temperature,
γ > 1 - Poisson adiabatic constant,
cv > 0 - specific heat at constant volume,
µ > 0, λ = −2µ/3 - viscosity coefficients,
k > 0 - heat conduction
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Initial condition:

w(x , 0) = w0(x), x ∈ Ω0

Boundary conditions: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt

Inlet ΓI : ρ|ΓI×(0,T ) = ρD ,

v |ΓI×(0,T ) = vD = (vD1, vD2)
T ,

2
∑

j=1

(

2
∑

i=1

τV
ij ni

)

vj + k
∂θ

∂n
= 0 on ΓI × (0, T );

Wall ΓWt
: vΓWt

= z ,
∂θ

∂n
= 0;

Outlet ΓO :
2
∑

i=1

τV
ij ni = 0,

∂θ

∂n
= 0 j = 1, 2;
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Flow induced airfoil vibrations

Flow induced airfoil vibrations
Flow induced vibrations of an elastically supported airfoil with two
degrees of freedom:
– the vertical displacement H,
– the angle α of rotation around an elastic axis EA

T

EA

k
HH

a

H

k
aaL t( )

M t( )

U
µ

a

The elastic support of the airfoil on translational and rotational
springs
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Description of the airfoil motion

Description of the airfoil motion

mḦ + kHHH + Sα α̈ cos α − Sαα̇2 sinα + dHHḢ = −L(t), (45)

SαḦ cos α + Iαα̈ + kααα + dααα̇ = M(t)

Initial conditions: H(0), α(0), Ḣ(0), α̇(0)

Physical data: m, Sα, Iα, kHH , kαα, dHH , dαα:
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Coupling of flow and structural problems

Coupling of flow and structural problems via the definition of

L - aerodynamic lift force,

M - aerodynamic torsional moment:

L = − ℓ

∫

ΓWt

2
∑

j=1

τ2jnjdS , M = ℓ

∫

ΓWt

2
∑

i ,j=1

τijnj r
ort
i dS ,(46)

τij = −pδij + τV
ij , rort

1 = −(x2 − xEA2), rort
2 = x1 − xEA1,

ℓ − airfoil depth
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Discrete problem

Discretization of the flow problem

construct a time partition 0 = t0 < t1 < t2 . . .,

the domain Ωt is approximated by a polygonal domain Ωh(t),

triangulation Th(t) in Ωh(t).
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Forms in the discrete problems

Forms in the discrete problem - depend on time
Convection form (uses the relation f s(w) = As(w)w and the
Vijayasundaram numerical flux)

bh(w̄h,wh,Φh, t) = −
∑

K∈Th(t)

∫

K

2
∑

s=1

(As(w̄h) − zs(t)I)wh ·
∂Φh

∂xs
dx

+
∑

Γ∈Fh(t)I

∫

Γ

(

P+ (〈w̄h 〉Γ ,nΓ) wh|Γ + P− (〈w̄h 〉Γ ,nΓ) wh|Γ
)

· [Φh]Γ dS

+
∑

Γ∈Fh(t)B

∫

Γ

(

P+ (〈w̄h 〉Γ ,nΓ) wh|Γ + P− (〈w̄h 〉Γ ,nΓ) wh|Γ
)

· Φh|Γ dS
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Viscosity form (IIPG)

ah(w̄h,wh,Φh, t) =
∑

K∈cTh(t)

∫

K

2
∑

s=1

2
∑

k=1

Ks,k(w̄h)
∂wh

∂xk

·
∂Φh

∂xs
dx

−
∑

Γ∈Fh(t)I

∫

Γ

2
∑

s=1

〈

2
∑

k=1

Ks,k(w̄h)
∂wh

∂xk

〉

Γ

(nΓ)s · [Φh]Γ dS

−
∑

Γ∈Fh(t)B

∫

Γ

2
∑

s=1

2
∑

k=1

Ks,k(w̄h|Γ)
∂wh

∂xk

∣

∣

∣

∣

Γ

(nΓ)s · Φh|Γ dS
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Reaction form

dh(wh,Φh, t) =
∑

K∈Th(t)

∫

K

divz(t) (wh · Φh) dx

Interior and boundary penalty

Jh(wh,Φh, t) =
∑

Γ∈Fh(t)I

h(Γ)−1

∫

Γ
[wh]Γ · [Φh]Γ dS

+
∑

Γ∈Fh(t)B

h(Γ)−1

∫

Γ
wh|Γ · Φh|Γ dS ,

Right-hand side form

ℓh(w̄h,Φh, t) = µ
∑

Γ∈Fh(t)B

h(Γ)−1

∫

Γ
wB(t) · Φh|Γ dS
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For simple notation we define the forms

Ah(w̄h,wh,Φh, t) = ah(w̄h,wh,Φh, t) + bh(w̄h,wh,Φh, t)

+dh(wh,Φh, t) + µJh(wh,Φh, t).

The approximate solution is sought in the space Sp,q
h,τ = (Sp,q

h,τ )4,
where

S
p,q
h,τ =

{

φ ; φ|Im =

q
∑

i=0

ζiφi , kde φi ∈ S
p
h (t), ζi ∈ Pq(tm−1, tm)

}

.
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Approximate solution

Linearized numerical scheme

Approximate solution: whτ satisfying

1) whτ ∈ Sp,q
h,τ , (47)

2)
∫

Im

((

DAwhτ

Dt
,Φhτ

)

t

+ Ah(w̄hτ ,whτ ,Φhτ , t)

)

dt

+
(

{whτ}m−1,Φhτ (t
+
m−1

)
)

=

∫

Im

ℓh(w̄hτ ,Φhτ , t) dt ∀Φhτ ∈ Sp,q
h,τ , m = 1, . . . ,M.

w̄hτ - prolongation from the time interval Im−1 to Im.
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Spurious overshoots and undershoots may appear in the numerical
solution at discontinuities or internal and boundary layers
To avoid them, we use

local artificial viscosity (M.F., V. Kučera, 2007)

based on the discontinuity indicator (M.F., V. Dolejší, C.
Schwab, 2003)

Realization of the FSI carried by

weak fluid-structure coupling or

strong fluid-structure coupling

Miloslav Feistauer Discontinuous Galerkin method for the solution of compressible



Application of the STDFEM to compressible flow

Examples - flow-induced vibrations of the profile NACA0012

Examples - flow-induced vibrations of the profile
NACA0012

Initial conditions: H(0) = 20 mm, α(0) = 6◦, Ḣ(0) = α̇(0) = 0

a) Subsonic flow

Far field velocities 30 and 35 m/s and Mach numbers 0.0882 and
0.1029, respectively: damped vibrations,

Far field velocity 40 m/s and Mach number 0.1176: flutter
instability combined with a divergence instability - vibration
amplitudes are increasing in time.
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Displacement H (left) and rotation angle α (right) of the airfoil in
dependence on time for far-field velocity 30, 35 and 40 m/s
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b) Hypersonic flow

Far field velocity 408 m/s, Mach number 1.2,

Far field velocity 680 m/s, Mach number 2.0,

Initial conditions: H(0) = 20 mm,
α(0) = 6◦, Ḣ(0) = α̇(0) = 0,

Bending and torsional stiffnesses - 1000times larger than for
low Mach number flows

=⇒ damped vibrations
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High-speed flow induced airfoil vibrations

Figure: Distribution of the Mach number (Ma). Upper for far field
Ma= 1.2 and Re = 107, lower for far field Ma= 2.0 and Re = 107 for
different time instants

Miloslav Feistauer Discontinuous Galerkin method for the solution of compressible



Application of the STDFEM to compressible flow

Airfoil vibrations
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Future work

Future work:

theory of continuous fluid-structure interaction problems

further analysis of qualitative properties of the developed
schemes

coupling of compressible flow with nonlinear elastic materials

including of turbulence models

Thank you for your attention
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