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Scalar nonlinear convection

a)
∂u
∂ t

+ div f(u) = g

b) u
∣∣
ΓD×(0,T )

= 0,

c) u(x ,0) = u0(x), x ∈ Ω.

f ∈ [C2
b(R)]d ,

f′(u) ·n≥ 0 on ΓN

We assume u is sufficiently regular:

u,ut ∈ L2(0, T ; Hp+1(Ω))

p >

{
(d + 1)/2, f ∈ [C2

b(R)]d ,

(d −1)/2, f ∈ [C3
b(R)]d ,ΓN = /0.
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Method of lines
Implicit scheme

Definition
Standard conforming p−order FEM solution of the
convection-diffusion problem:

a) uh ∈ C1([0,T ];Vh),

b)
(

∂uh(t)
∂ t

,ϕh

)
+ b
(
uh(t),ϕh

)
= `(ϕh)(t), ∀ϕh ∈ Vh, ∀ t ∈ (0,T ),

c) uh(0) = u0
h .

Convective term

b(u,v) =−
∫

Ω
f(u) ·∇v dx +

∫
ΓN

f(u) ·nv dS
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Definition
Standard conforming p−order FEM solution of the
convection-diffusion problem:

a) uh ∈ C1([0,T ];Vh),

b)
(

∂uh(t)
∂ t

,ϕh

)
+ b
(
uh(t),ϕh

)
= `(ϕh)(t), ∀ϕh ∈ Vh, ∀ t ∈ (0,T ),

c) uh(0) = u0
h .

Right-hand side term

`(v)(t) =
∫

Ω
g(t)v dx
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Error estimates

Let eh = η + ξ , where η = Πhu−u, ξ = uh−Πhu ∈ Vh.
Πh : L2(Ω)→ Vh is the L2(Ω)−projection
η = O(hµ ) in various norms, ξ =?
Subtract eq(u)−eq(uh), set ϕh := ξ
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Error estimates

Let eh = η + ξ , where η = Πhu−u, ξ = uh−Πhu ∈ Vh.
Πh : L2(Ω)→ Vh is the L2(Ω)−projection
η = O(hµ ) in various norms, ξ =?
Subtract eq(u)−eq(uh), set ϕh := ξ

(dξ

dt
,ξ
)

︸ ︷︷ ︸
1
2

d
dt ‖ξ (t)‖2

= b(uh,ξ )−b(u,ξ ) +
(dη

dt
,ξ
)
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Error estimates

Let eh = η + ξ , where η = Πhu−u, ξ = uh−Πhu ∈ Vh.
Πh : L2(Ω)→ Vh is the L2(Ω)−projection
η = O(hµ ) in various norms, ξ =?
Subtract eq(u)−eq(uh), set ϕh := ξ

(dξ

dt
,ξ
)

= b(uh,ξ )−b(u,ξ ) +
(dη

dt
,ξ
)

︸ ︷︷ ︸
≤O(h2p+2)+‖ξ‖2
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Error estimates

Let eh = η + ξ , where η = Πhu−u, ξ = uh−Πhu ∈ Vh.
Πh : L2(Ω)→ Vh is the L2(Ω)−projection
η = O(hµ ) in various norms, ξ =?
Subtract eq(u)−eq(uh), set ϕh := ξ

(dξ

dt
,ξ
)

= b(uh,ξ )−b(u,ξ ) +
(dη

dt
,ξ
)

⇓
d
dt
‖ξ (t)‖2 ≤ b(uh,ξ )−b(u,ξ ) + O(h2p+2) +‖ξ‖2
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d
dt
‖ξ (t)‖2 ≤ b(uh,ξ )−b(u,ξ ) + O(h2p+2) +‖ξ‖2

For Gronwall we need only h2p+2, ‖ξ‖2 on the RHS. Then

max
t∈[0,T ]

‖ξ (t)‖2dt = O(h2p+2).

Naively

b(uh,ξ )−b(u,ξ ) =
∫

Ω

(
f(u)−f(uh)

)
·∇ξ dx ≤C‖eh‖|ξ |1≤ C

ε
‖eh‖2 + 1

2ε|ξ |21,

If we estimate using the inverse inequality

b(uh,ξ )−b(u,ξ )≤ C‖eh‖|ξ |1 ≤ C‖eh‖CIh−1‖ξ‖,

then we get O
(

exp
( c

h

)
h2p+2).
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The estimate of Zhang, Shu (2004)

Lemma

b(uh,ξ )−b(u,ξ ) ≤ C
(

1 +
‖eh‖∞

h

)(
h2p+1 +‖ξ‖2

)
If f ∈ [C3

b(R)]d , then we get a factor of ‖eh‖2∞
h

If ‖eh(t)‖∞ = O(h), then

bh(uh,ξ )−bh(u,ξ ) ≤ C
(
h2p+1 +‖ξ‖2

)
.

For an explicit scheme, Zhang, Shu (2004) use induction:

‖eh(tn)‖= O(hp+1/2)⇒‖eh(tn+1)‖∞ = O(h)⇒‖eh(tn+1)‖= O(hp+1/2)
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Method of lines
Implicit scheme

Lemma
If ‖eh(ϑ)‖∞ = O(h) for all ϑ ∈ (0, t), then

‖eh‖L∞(0,t ;L2(Ω)) ≤ CT hp+1/2,

where CT is independent of h, t .

Main theorem
Let p > (d + 1)/2. Then

‖eh‖L∞(L2) ≤ CT hp+1/2,

Proof:
Nonlinear Gronwall-type lemma.
Continuous mathematical induction (Y. R. Chao, 1919)
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V. Kučera Error estimates for nonlinear convective problems...



Error estimates
From globally to locally Lipschitz f

Method of lines
Implicit scheme

Lemma
If ‖eh(ϑ)‖∞ = O(h) for all ϑ ∈ (0, t), then

‖eh‖L∞(0,t ;L2(Ω)) ≤ CT hp+1/2,

where CT is independent of h, t .

Main theorem
Let p > (d + 1)/2. Then

‖eh‖L∞(L2) ≤ CT hp+1/2,

Proof:
Nonlinear Gronwall-type lemma.
Continuous mathematical induction (Y. R. Chao, 1919)
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Continuous (real) mathematical induction

Chao 1919
ϕ(t) is a propositional function depending on t ∈ [0,T ] s.t.

(i) ϕ(0) is true,
(ii) ∃δ0 > 0 : ϕ(t) implies ϕ(t + δ ), ∀t , ∀δ ∈ [0,δ0].

Then ϕ(t) holds for all t ∈ [0,T ].
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Continuous (real) mathematical induction

Stronger version

ϕ(t) is a propositional function depending on t ∈ [0,T ] s.t.

(i) ϕ(0) is true,
(ii) ∀t ∃δt > 0 : ϕ(t) implies ϕ(t + δ ), ∀δ ∈ [0,δt ],

(iii) ∀t1, t2 : If ϕ holds on (t1, t2) then ϕ(t2) holds.

Then ϕ(t) holds for all t ∈ [0,T ].
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Proof of the key estimate

Lemma

b(uh,ξ )−b(u,ξ ) ≤ C
(

1+
‖eh(t)‖2∞

h2

)(
h2p+1|u(t)|2Hp+1(Ω) +‖ξ‖2

)
Proof:

b(uh,ξ )−b(u,ξ ) =
∫

Ω

(
f(u)− f(uh)

)
·∇ξ dx .

The Taylor expansion gives us

f(u)− f(uh) = f′(u)ξ + f′(u)η− 1
2 f′′u,uh

e2
h.

Thus

b(uh,ξ )−b(u,ξ ) =
∫

Ω
f′(u)ξ ·∇ξ dx +

∫
Ω

f′(u)η ·∇ξ dx− 1
2

∫
Ω

f′′u,uh
e2

h ·∇ξ dx
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Method of lines
Implicit scheme

Proof of the key estimate

b(uh,ξ )−b(u,ξ ) =
∫

Ω
f′(u)ξ ·∇ξ dx︸ ︷︷ ︸

(1)

+
∫

Ω
f′(u)η ·∇ξ dx︸ ︷︷ ︸

(2)

− 1
2

∫
Ω

f′′u,uh
e2

h ·∇ξ dx︸ ︷︷ ︸
(3)

(1) =−1
2

∫
Ω

div
(
f′(u)

)
ξ

2 dx ≤ C‖ξ‖2.

(2)≤ Chp+1CIh−1‖ξ‖ ≤ Ch2p +‖ξ‖2.

(3)≤ C‖eh‖∞‖eh‖CIh−1‖ξ‖ ≤ C
‖eh‖2∞

h2

(
Ch2p+2 +‖ξ‖2

)
+‖ξ‖2.
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Method of lines
Implicit scheme

Definition
Let 0 = t0 < t1 < · · ·< tN+1 = T , τn := tn+1− tn

a) un
h ∈ Vh,

b)
(

un+1
h −un

h
τn

,ϕh

)
+ b(un+1

h ,ϕh) = `(ϕh)(tn+1),

∀ϕh ∈ Vh, ∀n = 0, · · ·N,

c) u0
h ≈ u(0).
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Method of lines
Implicit scheme

Standard approach

eq(u)−eq(uh)

test by ξ

estimate b, `

use Gronwall’s inequality.

Theorem
There does not exist a Gronwall type lemma which could prove
the desired error estimate only from the error equation tested
by ξ and estimates of individual terms contained therein.
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Method of lines
Implicit scheme

Continuation

Auxiliary problem

Given τ ≥ 0 and Uh ∈ Vh, we seek uτ ∈ Vh such that(
un+1

h −un
h

τn
,ϕh

)
+ b(un+1

h ,ϕh) = `(ϕh)(tn+1), ∀ϕh ∈ Vh.

By setting Uh := un
h ,τ := τn, then uτ = un+1

h .
By setting Uh := un

h ,τ := 0, then uτ = un
h .

Lemma (Existence, uniqueness and continuity)

Let τ = O(h), then ∃!uτ ∈ Vh and ‖uτ‖ depends continuously on τ.

Definition (Continuated discrete solution)

Let ũh : [0,T ]→ Vh be such that for t ∈ [tn, tn+1] we define ũh(t) := uτ ,
the solution of the auxiliary problem with τ := t− tn and Uh := un

h .
Furthermore, we define ẽh := u− ũh.
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V. Kučera Error estimates for nonlinear convective problems...



Error estimates
From globally to locally Lipschitz f

Method of lines
Implicit scheme

Continuation

Auxiliary problem

Given τ ≥ 0 and Uh ∈ Vh, we seek uτ ∈ Vh such that(
uτ −Uh

τ
,ϕh

)
+ b
(
uτ ,ϕh

)
= l
(
ϕh
)
(t), ∀ϕh ∈ Vh.

By setting Uh := un
h ,τ := τn, then uτ = un+1

h .
By setting Uh := un

h ,τ := 0, then uτ = un
h .

Lemma (Existence, uniqueness and continuity)

Let τ = O(h), then ∃!uτ ∈ Vh and ‖uτ‖ depends continuously on τ.

Definition (Continuated discrete solution)
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V. Kučera Error estimates for nonlinear convective problems...



Error estimates
From globally to locally Lipschitz f

Method of lines
Implicit scheme

Continuation

uh

u0
h

u1
h

u2
h u3

h

u4
huτ

V. Kučera Error estimates for nonlinear convective problems...



Error estimates
From globally to locally Lipschitz f

Method of lines
Implicit scheme

Continuation

uh

u0
h

u1
h

u2
h u3

h

u4
huτ
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Method of lines
Implicit scheme

Remark
Estimates for ẽh =⇒ Estimates for en

h, n = 0, · · · ,N + 1.

Lemma
If ‖ẽh(ϑ)‖∞ = O(h) for all ϑ ∈ (0, t), then

‖ẽh‖L∞(0,t ;L2(Ω)) ≤ C(hp+1/2 + τ),

Main theorem

Let p > (d + 1)/2 and τ = O(h1+d/2). Then

‖ẽh‖L∞(0,T ;L2(Ω)) ≤ C(hp+1/2 + τ),

Proof: Continuous mathematical induction.
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1 Error estimates
Method of lines
Implicit scheme

2 From globally to locally Lipschitz f
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From globally to locally Lipschitz f

We assume only f ∈ (C2(R))d .
Zhang & Shu modify f far from R(u) to obtain f ∈ (C2

b(R))d .
This does not change u, but we get a completely new
scheme.
We prove error estimates directly for locally Lipschitz f.
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From globally to locally Lipschitz f

Let h ∈ (0,h0), t ∈ [0.T ]. We define the admissible set
U ad

h (t) := {v ∈ Vh;‖u(t)−v‖ ≤ h1+d/2}.
Functions from U ad

h (t) have values in some fixed compact
[−R;R]. Hence, f is Lipschitz continuous on [−R;R].

Lemma

If uh(t) ∈U ad
h (t), then

bh(uh,ξ )−bh(u,ξ )≤ C
(
h2p+1 +‖ξ‖2

)
.
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From globally to locally Lipschitz f

Lemma

If uh(ϑ) ∈U ad
h (ϑ) for all ϑ ∈ (0, t), then

‖eh‖L∞(0,t ;L2(Ω)) ≤ CT hp+1/2,

where CT is independent of h, t .

Main theorem
Let p > 1 + d/2. Then

‖eh‖L∞(0,T ;L2(Ω)) ≤ CT hp+1/2,

Proof: Continuous mathematical induction.
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Conclusions and outlook

Estimates for nonlinear convection equations under high
regularity assumptions.
Analysis is valid for higher order elements: p > (d −1)/2.
Unnatural CFL condition τ = O(h(1+d)/2) for implicit case.
The situation would improve for higher order discretizations
in time, e.g. BDF, space-time DG, ... CFL condition
τ = O(h(1+d)/2k ) for a k -th order scheme in time.
Estimates for locally Lipschitz nonlinearities.
Possible (but technical) for DG.
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V. Kučera Error estimates for nonlinear convective problems...



Error estimates
From globally to locally Lipschitz f

Conclusions and outlook

Estimates for nonlinear convection equations under high
regularity assumptions.
Analysis is valid for higher order elements: p > (d −1)/2.
Unnatural CFL condition τ = O(h(1+d)/2) for implicit case.
The situation would improve for higher order discretizations
in time, e.g. BDF, space-time DG, ... CFL condition
τ = O(h(1+d)/2k ) for a k -th order scheme in time.
Estimates for locally Lipschitz nonlinearities.
Possible (but technical) for DG.
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Thank you for your attention.
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