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Scalar nonlinear convection

au .
a) a—t—i-dlvf(u)—g
b) )0 =0

c) u(x,00=u’(x), xeQ.
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Scalar nonlinear convection

u .
a)  So+divi(u)=g
b) )0 =0

c) u(x,00=u’(x), xeQ.

e fe[C3(R)]Y,
o f(u)n>0o0nTy
@ We assume u is sufficiently regular:

u,up € L2(0, T; HPY1(Q))
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Scalar nonlinear convection

u .
a)  So+divi(u)=g
b) )0 =0

c) u(x,00=u’(x), xeQ.

e fe[C3(R)]Y,
o f(u)n>0o0nTy
@ We assume u is sufficiently regular:

u,up € L2(0, T; HPY1(Q))

(d+1)/2, fe[CAR)Y,
° p>{(d—1)/2, fe[Cg(R)]d,rN:@.
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Implicit scheme

Standard conforming p—order FEM solution of the
convection-diffusion problem:

a) up € C'([0, T]; Vi),

b) (agft)"Ph) +b(Un(1). 9n) = U(@n) (1), Yon € Vi, V1€ (0, T),

¢) up(0) = uf.

Convective term

b(u,v) :—/Qf(u)-Vvder/er(u)-nvdS
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Error estimates Method of lines
Implicit scheme

Standard conforming p—order FEM solution of the
convection-diffusion problem:

a) up € C'([0, T]; Vi),

b) (agt(t)v‘Ph) +b(un(t), on) = L(@n) (1), Von€ Vi, V€ (0,T),

¢) up(0) = uf.

Right-hand side term
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Error estimates

o Leteny=n+&, where n=Npu—u, &E=up—MNuu e V.
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o Leteny=n+&, where n=Npu—u, &E=up—MNuu e V.
@ My: L2(Q) — Vyis the L2(Q)—projection
@ 1 = O(h*) in various norms, § =7
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Error estimates

o Leteny=n+&, where n=Npu—u, &E=up—MNuu e V.
@ My: L2(Q) — Vyis the L2(Q)—projection

@ 1 = O(h*) in various norms, § =7

@ Subtract eq(u) — eq(up), set o =&

(55:6) = &) -blw.5)+ (51.2)
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Error estimates

o Leteny=n+&, where n=Npu—u, &E=up—MNuu e V.
@ My: L2(Q) — Vyis the L2(Q)—projection

@ 1 = O(h*) in various norms, § =7

@ Subtract eq(u) — eq(up), set o =&

((35, ) = b(up,§) — b(u, &)+ (C([T? )

<O(hP+2)+| ¢ |12
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Error estimates

o Leteny=n+&, where n=Npu—u, &E=up—MNuu e V.
@ My: L2(Q) — Vyis the L2(Q)—projection

@ 1 = O(h*) in various norms, § =7

@ Subtract eq(u) — eq(up), set o =&

()= sune)- w2y (409
a2
d%l\éi(i‘)H2 < b(up,&) — b(u,&) + O(HPP+2) + | £|[?

V. Kucera Error estimates for nonlinear convective problems...



Error estimates Method of lines
Implicit scheme

SOOI < b(n &)~ b(u &)+ O D) 112 |

@ For Gronwall we need only h?P*2, ||£||2 on the RHS. Then

t)||2dt = O(h?P+2).
tg%\\é( )| ( )
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SOOI < b(n &)~ b(u &)+ O D) 112 |

@ For Gronwall we need only h?P*2, ||£||2 on the RHS. Then

t)||2dt = O(h?P+2).
tg%\\é( )| ( )

@ Naively

b(up, ) —b(u,§) = /Q (f(u)—f(un)) - VEdx < Cllenll|E]1 < Ellenll+3elE 15,
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SOOI < b(n &)~ b(u &)+ O D) 112 |

@ For Gronwall we need only h?P*2, ||£||2 on the RHS. Then

t)||2dt = O(h?P+2).
tg%\\é( )| ( )

@ Naively

b(up, &) —b(u,&) = /Q (f(u)—f(un)) - VEdx < Cllenll|E]1 < Ellenll+3elE 15,

@ If we estimate using the inverse inequality
b(up, &) — b(u,§) < Cllen|||&l1 < Cllen| Cih~ &I,

then we get O(exp (§)h?P12).
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The estimate of Zhang, Shu (2004)

b(un,£)~ b(u.£) < C(1+1%1=) (2ot 4 g 2)
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The estimate of Zhang, Shu (2004)

b(un. &)~ b(u, &) < C(1+1%0=) (2ot 1 e )

e If f € [C3(R)]9, then we get a factor of —”eg”i

V. Kucera Error estimates for nonlinear convective problems...



Error estimates Method of lines
Implicit scheme

The estimate of Zhang, Shu (2004)

b(un. &)~ b(u, &) < C(1+1%0=) (2ot 1 e )

e If fe [C3(R)]9, then we get a factor of %
o If |en(t)].. = O(h), then

bn(Un, &) — bn(u, &) < C(PPPH +E]12).
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Implicit scheme

The estimate of Zhang, Shu (2004)

b(un,£)~ b(u.£) < C(1+1%1=) (2ot 4 g 2)

e If fe [C3(R)]9, then we get a factor of %
o If |len(t)]l. = O(h), then

bn(un, &) — bn(u,&) < C(RPTT 4] IE|7).
@ For an explicit scheme, Zhang, Shu (2004) use induction:

[ en(t)ll = O(PP*/2) = [len(tns1)ll- = O(h) = llen(ts1)]| = OH+/)
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If ||en(?)]| = O(h) for all & € (0,t), then

nll - (0.t12()) < CTHP1/2,

where Cr is independent of h, t.

V. Kucera Error estimates for nonlinear convective problems...



Error estimates Method of lines
Implicit scheme

If ||en(?)]| = O(h) for all & € (0,t), then

nll - (0.t12()) < CTHP1/2,

where Cr is independent of h, t.

Main theorem

Let p> (d+1)/2. Then

lenlli=(i2y < CrhPH/2,

Proof:
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If ||en(?)]| = O(h) for all & € (0,t), then
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where Cr is independent of h, t.

Main theorem

Let p> (d+1)/2. Then

lenlli=(i2y < CrhPH/2,

Proof:
@ Nonlinear Gronwall-type lemma.
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If ||en(?)]| = O(h) for all & € (0,t), then

nll - (0.t12()) < CTHP1/2,

where Cr is independent of h, t.

Main theorem

Let p> (d+1)/2. Then

lenlli=(i2y < CrhPH/2,

Proof:
@ Nonlinear Gronwall-type lemma.
@ Continuous mathematical induction (Y. R. Chao, 1919)
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Continuous (real) mathematical induction

Chao 1919

¢(t) is a propositional function depending on t € [0, T] s.t.

(1) @(0) is true,
(if) 389 > 0: o(t) implies ¢(t+d), Vt, V6 € [0, &].

Then ¢(t) holds for all t € [0, T].
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Continuous (real) mathematical induction

Stronger version

¢(t) is a propositional function depending on ¢t € [0, T] s.t.

(1) (0) is true,
(if) Vt36:>0: ¢(t) implies ¢(t+9), V6 €[0,5],
(iiil) Vt,t: If @ holds on (t,%) then ¢(f) holds.

Then ¢(t) holds for all t € [0, T].
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Proof of the key estimate

b(un &) bl &) < O(1+ 19202 (rovt iy, o+ 212)

Proof:

b(un, §) — b(u,&) = | (H(u) ~F(up) -VEdx.
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Proof of the key estimate

b(un &) bl &) < O(1+ 19202 (rovt iy, o+ 212)

Proof:
b(un, §) — b(u,&) = | (H(u) ~F(up) -VEdx.
The Taylor expansion gives us
f(u) —f(un) = F(u)E +F(u)n — 5 e
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Proof of the key estimate

b(un &) bl &) < O(1+ 19202 (rovt iy, o+ 212)

Proof:
b(un, §) — b(u,&) = | (H(u) ~F(up) -VEdx.
The Taylor expansion gives us

f(u) —f(up) = F (L) +F(u)n — 31, €.
Thus

b(up, &) —b(u, £) /f’ éV&der/f’ ) VEdx— /fuuheh VE dx
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Proof of the key estimate

b(up, ) —b(u, &) = /f’(u)§ vgdx+/f/ - Védx——/fﬁuheh-V§dx
™) @) 3

(1) =~ [ div(t(w)E2ax < Clig
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Proof of the key estimate

b(up, ) —b(u, &) = /f’(u)§ vgdx+/f/ - Védx——/fﬁuheh-V§dx
™) @) 3

(1) =~} [ div(F () g2ax < Cli

(2) < ChrICh g < ChPP +|1& 1%,
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Proof of the key estimate

b(un. &) —b(u,£) = /f’(u)é VEdx+ [ F(um-VEdx—} [ 1,68 VEdx

(1) (2 (3)

(1) =~ [ div(t(w)E2ax < Clig

(2) < ChriCh g < ChPP + |1& 1%,

€ehlle
(®) < Clenl-llenl G~ < 1= W (creer2 4 e 2) 1 ).
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Let0=1 < K <~~<tN+1=T,Tn::tn+1ftn

a) U,q S Vh,

un+1 —yn
2 <h’ch’q)h) +b(ulr7’+17q)h) = £(¢n) (tns1)

n

V(ph S Vh7 Vn:07--~N,
¢) u ~ u(0).
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Standard approach

® eq(u) —eq(un)
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Standard approach

® eq(u)—eq(un)
@ testby &
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Standard approach

@ eq(u)—eq(un)
@ testby &
@ estimate b,/
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Standard approach

® eq(u)—eq(un)

@ testby &

@ estimate b,/

@ use Gronwall’s inequality.
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Standard approach

® eq(u)—eq(un)

@ testby &

@ estimate b,/

@ use Gronwall’s inequality.

There does not exist a Gronwall type lemma which could prove
the desired error estimate only from the error equation tested
by & and estimates of individual terms contained therein.
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Continuation

Auxiliary problem

Given 7 > 0 and U, € V), we seek u; € Vj, such that

un+1 _ un
<hfnh’¢h) +b(UZ+1,(ph) = 0(@p) (th1), Vop € Vi
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Continuation

Auxiliary problem

Given 7 > 0 and U, € V), we seek u; € Vj, such that

u:— U
< . h#Ph) +b(uz, 0n) =1(9n)(t), VYope Vi
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Continuation

Auxiliary problem

Given 7 > 0 and U, € V), we seek u; € Vj, such that

u:— U
< . h#Ph) +b(uz, 0n) =1(9n)(t), VYope Vi

By setting Up := ufl, T := 1, then u; = u™.
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Continuation

Auxiliary problem

Given 7 > 0 and U, € V), we seek u; € Vj, such that

u:— U
< . h#Ph) +b(uz, 0n) =1(9n)(t), VYope Vi

By setting Up := ufl, T := 1, then u; = u™.

By setting Up, := ujl, 7:= 0, then u; = uj.
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Continuation

Auxiliary problem
Given 7 > 0 and U, € V), we seek u; € Vj, such that

u:— U
< . h#Ph) +b(uz, 0n) =1(9n)(t), VYope Vi

By setting Up := ufl, T := 1, then u; = u™.

By setting Up, := ujl, 7:= 0, then u; = uj.

Lemma (Existence, uniqueness and continuity)

Let T = O(h), then 3'u; € V), and ||u.|| depends continuously on .
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Continuation

Auxiliary problem
Given 7 > 0 and U, € V), we seek u; € Vj, such that

u:— U
< . h#Ph) +b(uz, 0n) =1(9n)(t), VYope Vi

By setting Up := ufl, T := 1, then u; = u™.

By setting Up, := ujl, 7:= 0, then u; = uj.

Lemma (Existence, uniqueness and continuity)
Let T = O(h), then 3'u; € V), and ||u.|| depends continuously on .

Definition (Continuated discrete solution)

Let dp : [0, T] — Vj, be such that for t € [t,, t,1] we define Ux(t) := uy,
the solution of the auxiliary problem with 7 :=t —t, and U, := u}.
Furthermore, we define &, := u— ip,.
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Continuation

Un \

R
- - - -=-=-=-=---
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Continuation

tn A\
4
v o
2 3 P 1
| Uh uh . I
? ® 1
0 Uh I 1 1
* | 1
Uh L | I : 1
1 | 1 1
1 | 1 1
| | 1 1
| | 1 1
1 | 1 1
I | 1 1 >
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Continuation

Un \

4
U o
2 3 P 1
u u 1
h h |
U1 | 4 9/ 1
0 h 1 1 1
* 1 1 1
Uh q | 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 ~
>
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Continuation

Un \

e e e e e e - — @
:_C

v
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Estimates for &, — Estimatesforef, n=0,--- ,N+1.

If || &n(9)||.. = O(h) for all ¥ € (0, 1), then

18l 1= (0..12¢)) < C(HPH12 4 1),
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Estimates for &, — Estimatesforef, n=0,--- ,N+1.

Lemma
If [[€n(D)]| = O(h) for all ¥ € (0,t), then

18l 1= (0..12¢)) < C(HPH12 4 1),

| A

Main theorem
Let p> (d+1)/2 and t = O(h'*t9/2). Then

1€nll =0, 7:12(0)) < C(hPH/2 4 1),

A,

V. Kucera Error estimates for nonlinear convective problems...




Error estimates Method of lines
Implicit scheme

Estimates for &, — Estimatesforef, n=0,--- ,N+1.

Lemma
If [[€n(D)]| = O(h) for all ¥ € (0,t), then

18l 1= (0..12¢)) < C(HPH12 4 1),

| A

Main theorem
Let p> (d+1)/2 and t = O(h'*t9/2). Then

1€nll =0, 7:12(0)) < C(hPH/2 4 1),

A,

Proof: Continuous mathematical induction.
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@ We assume only f € (C?(R))“.
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From globally to locally Lipschitz f

@ We assume only f € (C?(R))“.

@ Zhang & Shu modify f far from % (u) to obtain f € (C2(R))“.
This does not change u, but we get a completely new
scheme.
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From globally to locally Lipschitz f

@ We assume only f € (C?(R))“.

@ Zhang & Shu modify f far from % (u) to obtain f € (C2(R))“.
This does not change u, but we get a completely new
scheme.

@ We prove error estimates directly for locally Lipschitz f.
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From globally to locally Lipschitz f

@ Let he (0,hp),t € [0.T]. We define the admissible set
29(t) == {v € Vi;|Ju(t) — v|| < h'F9/2}.
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From globally to locally Lipschitz f

@ Let he (0,hp),t € [0.T]. We define the admissible set
29(t) == {v € Vi;|Ju(t) — v|| < h'F9/2}.

@ Functions from %,29(t) have values in some fixed compact
[—R; R]. Hence, f is Lipschitz continuous on [—AR; R].
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From globally to locally Lipschitz f

@ Let he (0,hp),t € [0.T]. We define the admissible set
29(t) == {v € Vi;|Ju(t) — v|| < h'F9/2}.

@ Functions from %,29(t) have values in some fixed compact
[—R; R]. Hence, f is Lipschitz continuous on [—AR; R].

If up(t) € %,29(t), then

bn(un, &) — bn(u,&) < C(HPPHT +|1&|7).
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From globally to locally Lipschitz f

If up(®) € 2,29(¥) for all ¥ € (0, 1), then

nll 1= (0.t12()) < CTHP1/2,

where Cr is independent of h,t.
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From globally to locally Lipschitz f

Lemma

If up(®) € 2,29(¥) for all ¥ € (0, 1), then

nll 1= (0.t12()) < CTHP1/2,

where Cr is independent of h,t.

Main theorem
Letp>1+d/2. Then

lenll =0, T;12¢)) < CrhPH/2,

Proof: Continuous mathematical induction.
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Conclusions and outlook

@ Estimates for nonlinear convection equations under high
regularity assumptions.
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Conclusions and outlook

@ Estimates for nonlinear convection equations under high
regularity assumptions.

@ Analysis is valid for higher order elements: p > (d —1)/2.
@ Unnatural CFL condition T = O(h(1+9)/2) for implicit case.
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Conclusions and outlook

@ Estimates for nonlinear convection equations under high
regularity assumptions.

@ Analysis is valid for higher order elements: p > (d —1)/2.
@ Unnatural CFL condition T = O(h(1+9)/2) for implicit case.

@ The situation would improve for higher order discretizations
in time, e.g. BDF, space-time DG, ... CFL condition
7= O(h('*9)/2K) for a k-th order scheme in time.
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@ Estimates for nonlinear convection equations under high
regularity assumptions.

@ Analysis is valid for higher order elements: p > (d —1)/2.
@ Unnatural CFL condition T = O(h(1+9)/2) for implicit case.

@ The situation would improve for higher order discretizations
in time, e.g. BDF, space-time DG, ... CFL condition
7= O(h('*9)/2K) for a k-th order scheme in time.

@ Estimates for locally Lipschitz nonlinearities.
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Conclusions and outlook

@ Estimates for nonlinear convection equations under high
regularity assumptions.

@ Analysis is valid for higher order elements: p > (d —1)/2.
@ Unnatural CFL condition T = O(h(1+9)/2) for implicit case.

@ The situation would improve for higher order discretizations
in time, e.g. BDF, space-time DG, ... CFL condition
7= O(h('*9)/2K) for a k-th order scheme in time.

@ Estimates for locally Lipschitz nonlinearities.
@ Possible (but technical) for DG.
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Thank you for your attention.
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