Error estimates for nonlinear convective problems in finite element methods

Václav Kučera

Department of Numerical Mathematics Charles University in Prague

V. Kučera Error estimates for nonlinear convective problems...

< 同 > < 回 > < 回

- Method of lines
- Implicit scheme

V. Kučera Error estimates for nonlinear convective problems...

∃ ► 4

Method of lines Implicit scheme

Prom globally to locally Lipschitz f

V. Kučera Error estimates for nonlinear convective problems...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Method of lines Implicit scheme

Scalar nonlinear convection

a)
$$\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(u) = g$$

b) $u|_{u} = u = 0$

)
$$u|_{\Gamma_D\times(0,T)}=0,$$

c)
$$u(x,0) = u^0(x), x \in \Omega.$$

• $\mathbf{f} \in [C_b^2(\mathbb{R})]^d$,

We assume u is sufficiently regular:

 $u, u_t \in L^2(0, T; H^{p+1}(\Omega))$

• $p > \begin{cases} (d+1)/2, & \mathbf{f} \in [C_b^2(\mathbb{R})]^d, \\ (d-1)/2, & \mathbf{f} \in [C_b^3(\mathbb{R})]^d, \Gamma_N = \ell \end{cases}$

< 回 > < 回 > < 回 >

Method of lines Implicit scheme

Scalar nonlinear convection

a)
$$\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(u) = g$$

)
$$u|_{\Gamma_D\times(0,T)}=0,$$

c)
$$u(x,0) = u^0(x), x \in \Omega.$$

- $\mathbf{f} \in [C_b^2(\mathbb{R})]^d$,
- $\mathbf{f}'(u) \cdot \mathbf{n} \ge 0$ on Γ_N

• We assume *u* is sufficiently regular:

 $u, u_t \in L^2(0, T; H^{p+1}(\Omega))$

• $p > \begin{cases} (d+1)/2, & \mathbf{f} \in [C_b^2(\mathbb{R})]^d, \\ (d-1)/2, & \mathbf{f} \in [C_b^3(\mathbb{R})]^d, \Gamma_N = \emptyset \end{cases}$

Method of lines Implicit scheme

Scalar nonlinear convection

a)
$$\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(u) = g$$

)
$$u|_{\Gamma_D\times(0,T)}=0,$$

c)
$$u(x,0) = u^0(x), x \in \Omega.$$

- $\mathbf{f} \in [C_b^2(\mathbb{R})]^d$,
- $\mathbf{f}'(u) \cdot \mathbf{n} \ge 0$ on Γ_N
- We assume *u* is sufficiently regular:

$$u, u_t \in L^2(0, T; H^{p+1}(\Omega))$$

• $p > \begin{cases} (d+1)/2, & \mathbf{f} \in [C_b^2(\mathbb{R})]^d, \\ (d-1)/2, & \mathbf{f} \in [C_b^3(\mathbb{R})]^d, \Gamma_N = \emptyset \end{cases}$

Method of lines Implicit scheme

Scalar nonlinear convection

a)
$$\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(u) = g$$

$$) \qquad u|_{\Gamma_D\times(0,T)}=0,$$

c)
$$u(x,0) = u^0(x), x \in \Omega.$$

• $\mathbf{f} \in [C_b^2(\mathbb{R})]^d$,

- $\mathbf{f}'(u) \cdot \mathbf{n} \ge 0$ on Γ_N
- We assume *u* is sufficiently regular:

$$u, u_t \in L^2(0, T; H^{p+1}(\Omega))$$
 $p > \begin{cases} (d+1)/2, & \mathbf{f} \in [C_b^2(\mathbb{R})]^d, \ (d-1)/2, & \mathbf{f} \in [C_b^3(\mathbb{R})]^d, \Gamma_N = \emptyset. \end{cases}$

< 合 ▶

Definition

Standard conforming p-order FEM solution of the convection-diffusion problem:

a)
$$u_h \in C^1([0, T]; V_h)$$
,
b) $\left(\frac{\partial u_h(t)}{\partial t}, \varphi_h\right) + b(u_h(t), \varphi_h) = \ell(\varphi_h)(t), \quad \forall \varphi_h \in V_h, \ \forall t \in (0, T),$
c) $u_h(0) = u_h^0$.

Convective term

$$\boldsymbol{b}(\boldsymbol{u},\boldsymbol{v}) = -\int_{\Omega} \mathbf{f}(\boldsymbol{u}) \cdot \nabla \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \int_{\Gamma_N} \mathbf{f}(\boldsymbol{u}) \cdot \mathbf{n} \boldsymbol{v} \, \mathrm{d}\boldsymbol{S}$$

Definition

Standard conforming p-order FEM solution of the convection-diffusion problem:

a)
$$u_h \in C^1([0, T]; V_h)$$
,
b) $\left(\frac{\partial u_h(t)}{\partial t}, \varphi_h\right) + b(u_h(t), \varphi_h) = \ell(\varphi_h)(t)$, $\forall \varphi_h \in V_h, \forall t \in (0, T)$,
c) $u_h(0) = u_h^0$.

Right-hand side term

$$\ell(\mathbf{v})(t) = \int_{\Omega} g(t) \mathbf{v} \, \mathrm{d}x$$

- Let $e_h = \eta + \xi$, where $\eta = \prod_h u u$, $\xi = u_h \prod_h u \in V_h$.
- $\Pi_h : L^2(\Omega) \to V_h$ is the $L^2(\Omega)$ -projection
- $\eta = \mathcal{O}(h^\mu)$ in various norms, $\xi = ?$
- Subtract $eq(u) eq(u_h)$, set $\varphi_h := \xi$

< 日 > < 回 > < 回 > < 回 > < 回 > <

- Let $e_h = \eta + \xi$, where $\eta = \prod_h u u$, $\xi = u_h \prod_h u \in V_h$.
- $\Pi_h : L^2(\Omega) \to V_h$ is the $L^2(\Omega)$ -projection
- $\eta = \mathcal{O}(h^\mu)$ in various norms, $\xi = 3$
- Subtract $eq(u) eq(u_h)$, set $\varphi_h := \xi$

・ロト ・四ト ・ヨト ・ヨト

- Let $e_h = \eta + \xi$, where $\eta = \prod_h u u$, $\xi = u_h \prod_h u \in V_h$.
- $\Pi_h : L^2(\Omega) \to V_h$ is the $L^2(\Omega)$ -projection
- $\eta = O(h^{\mu})$ in various norms, $\xi = ?$
- Subtract $eq(u) eq(u_h)$, set $\varphi_h := \xi$

- Let $e_h = \eta + \xi$, where $\eta = \prod_h u u$, $\xi = u_h \prod_h u \in V_h$.
- $\Pi_h : L^2(\Omega) \to V_h$ is the $L^2(\Omega)$ -projection
- $\eta = O(h^{\mu})$ in various norms, $\xi = ?$
- Subtract $eq(u) eq(u_h)$, set $\varphi_h := \xi$

$$\underbrace{\left(\frac{\mathrm{d}\xi}{\mathrm{d}t},\xi\right)}_{\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\xi(t)\|^{2}} = b(u_{h},\xi) - b(u,\xi) + \left(\frac{\mathrm{d}\eta}{\mathrm{d}t},\xi\right)$$

- Let $e_h = \eta + \xi$, where $\eta = \prod_h u u$, $\xi = u_h \prod_h u \in V_h$.
- $\Pi_h : L^2(\Omega) \to V_h$ is the $L^2(\Omega)$ -projection
- $\eta = O(h^{\mu})$ in various norms, $\xi = ?$
- Subtract $eq(u) eq(u_h)$, set $\varphi_h := \xi$

$$\left(\frac{\mathrm{d}\xi}{\mathrm{d}t},\xi\right) = b(u_h,\xi) - b(u,\xi) + \underbrace{\left(\frac{\mathrm{d}\eta}{\mathrm{d}t},\xi\right)}_{\leq O(h^{2p+2}) + \|\xi\|^2}$$

・ロット (母) ・ ヨ) ・ ・ ヨ)

- Let $e_h = \eta + \xi$, where $\eta = \prod_h u u$, $\xi = u_h \prod_h u \in V_h$.
- $\Pi_h : L^2(\Omega) \to V_h$ is the $L^2(\Omega)$ -projection
- $\eta = O(h^{\mu})$ in various norms, $\xi = ?$
- Subtract $eq(u) eq(u_h)$, set $\varphi_h := \xi$

$$\left(\frac{\mathrm{d}\xi}{\mathrm{d}t},\xi\right) = b(u_h,\xi) - b(u,\xi) + \left(\frac{\mathrm{d}\eta}{\mathrm{d}t},\xi\right)$$

$$\downarrow$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\xi(t)\|^2 \le b(u_h,\xi) - b(u,\xi) + O(h^{2p+2}) + \|\xi\|^2$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\xi(t)\|^2 \le b(u_h,\xi) - b(u,\xi) + O(h^{2p+2}) + \|\xi\|^2$$

• For Gronwall we need only h^{2p+2} , $\|\xi\|^2$ on the RHS. Then

$$\max_{t\in[0,T]} \|\xi(t)\|^2 \mathrm{d}t = O(h^{2p+2}).$$

Naively

 $b(u_h,\xi)-b(u,\xi)=\int_{\Omega} \left(\mathbf{f}(u)-\mathbf{f}(u_h)\right)\cdot\nabla\xi\,\mathrm{d} x\leq C\|\boldsymbol{e}_h\||\xi|_1\leq \frac{C}{\varepsilon}\|\boldsymbol{e}_h\|^2+\frac{1}{2}\varepsilon|\xi|_1^2,$

If we estimate using the inverse inequality

 $b(u_h,\xi) - b(u,\xi) \le C ||e_h|||\xi|_1 \le C ||e_h||C_h|^{-1} ||\xi||,$

then we get $O(\exp\left(\frac{c}{h}\right)h^{2p+2})$.

Image: Image:

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\xi(t)\|^2 \le b(u_h,\xi) - b(u,\xi) + O(h^{2p+2}) + \|\xi\|^2$$

• For Gronwall we need only h^{2p+2} , $\|\xi\|^2$ on the RHS. Then

$$\max_{t\in[0,T]} \|\xi(t)\|^2 \mathrm{d}t = O(h^{2p+2}).$$

Naively

$$\boldsymbol{b}(\boldsymbol{u}_h,\boldsymbol{\xi}) - \boldsymbol{b}(\boldsymbol{u},\boldsymbol{\xi}) = \int_{\Omega} \left(\mathbf{f}(\boldsymbol{u}) - \mathbf{f}(\boldsymbol{u}_h) \right) \cdot \nabla \boldsymbol{\xi} \, \mathrm{d}\boldsymbol{x} \leq \boldsymbol{C} \|\boldsymbol{e}_h\| |\boldsymbol{\xi}|_1 \leq \frac{C}{\varepsilon} \|\boldsymbol{e}_h\|^2 + \frac{1}{2}\varepsilon |\boldsymbol{\xi}|_1^2,$$

If we estimate using the inverse inequality

 $b(u_h,\xi) - b(u,\xi) \le C ||e_h|||\xi|_1 \le C ||e_h||C_I h^{-1}||\xi||,$

then we get $O(\exp\left(\frac{c}{h}\right)h^{2p+2})$.

• • • • • • • • • • •

Error estimates Method of lines From globally to locally Lipschitz f Implicit scheme

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\xi(t)\|^2 \le b(u_h,\xi) - b(u,\xi) + O(h^{2p+2}) + \|\xi\|^2$$

• For Gronwall we need only h^{2p+2} , $\|\xi\|^2$ on the RHS. Then

$$\max_{t\in[0,T]} \|\xi(t)\|^2 \mathrm{d}t = O(h^{2p+2}).$$

Naively

$$b(u_h,\xi)-b(u,\xi)=\int_{\Omega} \left(\mathbf{f}(u)-\mathbf{f}(u_h)\right)\cdot\nabla\xi\,\mathrm{d} x\leq C\|\boldsymbol{e}_h\||\xi|_1\leq \frac{c}{\varepsilon}\|\boldsymbol{e}_h\|^2+\frac{1}{2}\varepsilon|\xi|_1^2,$$

If we estimate using the inverse inequality

 $b(u_h,\xi) - b(u,\xi) \le C ||e_h|||\xi|_1 \le C ||e_h||C_I h^{-1}||\xi||,$

then we get $O(\exp(\frac{c}{h})h^{2p+2})$.

< 17 >

Method of lines Implicit scheme

The estimate of Zhang, Shu (2004)

Lemma

$$b(u_h,\xi) - b(u,\xi) \leq C\Big(1 + \frac{\|e_h\|_{\infty}}{h}\Big) (h^{2p+1} + \|\xi\|^2)$$

If **f** ∈ [C³_b(ℝ)]^d, then we get a factor of <sup>||e_h||²_b
 If ||e_h(t)||_∞ = O(h), then
</sup>

$$b_h(u_h,\xi) - b_h(u,\xi) \le C(h^{2p+1} + \|\xi\|^2).$$

For an explicit scheme, Zhang, Shu (2004) use induction:

 $||e_h(t_n)|| = O(h^{p+1/2}) \Rightarrow ||e_h(t_{n+1})||_{\infty} = O(h) \Rightarrow ||e_h(t_{n+1})|| = O(h^{p+1/2})$

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Method of lines Implicit scheme

The estimate of Zhang, Shu (2004)

Lemma

$$b(u_h,\xi) - b(u,\xi) \leq C\Big(1 + \frac{\|e_h\|_{\infty}}{h}\Big) (h^{2p+1} + \|\xi\|^2)$$

If f ∈ [C³_b(ℝ)]^d, then we get a factor of ^{||e_h|²/_∞}/_h
If ||e_h(t)||_∞ = O(h), then

$b_h(u_h,\xi) - b_h(u,\xi) \le C(h^{2p+1} + \|\xi\|^2).$

For an explicit scheme, Zhang, Shu (2004) use induction:

 $||e_h(t_n)|| = O(h^{p+1/2}) \Rightarrow ||e_h(t_{n+1})||_{\infty} = O(h) \Rightarrow ||e_h(t_{n+1})|| = O(h^{p+1/2})$

・ロト ・四ト ・ヨト ・ヨト

э.

Method of lines Implicit scheme

The estimate of Zhang, Shu (2004)

Lemma

$$b(u_h,\xi) - b(u,\xi) \le C\Big(1 + \frac{\|e_h\|_{\infty}}{h}\Big) (h^{2p+1} + \|\xi\|^2)$$

If **f** ∈ [C³_b(ℝ)]^d, then we get a factor of ^{||e_h||²_c}/_h
 If ||e_h(t)||_∞ = O(h), then

$$b_h(u_h,\xi) - b_h(u,\xi) \leq C(h^{2p+1} + \|\xi\|^2).$$

• For an explicit scheme, *Zhang, Shu (2004)* use induction:

 $||e_h(t_n)|| = O(h^{p+1/2}) \Rightarrow ||e_h(t_{n+1})||_{\infty} = O(h) \Rightarrow ||e_h(t_{n+1})|| = O(h^{p+1/2})$

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Method of lines Implicit scheme

The estimate of Zhang, Shu (2004)

Lemma

$$b(u_h,\xi) - b(u,\xi) \leq C\Big(1 + \frac{\|e_h\|_{\infty}}{h}\Big) \Big(h^{2p+1} + \|\xi\|^2\Big)$$

- If $\mathbf{f} \in [C^3_b(\mathbb{R})]^d$, then we get a factor of $\frac{\|e_h\|_\infty^2}{h}$
- If $\|e_h(t)\|_{\infty} = O(h)$, then

$$b_h(u_h,\xi) - b_h(u,\xi) \leq C(h^{2p+1} + \|\xi\|^2).$$

• For an explicit scheme, Zhang, Shu (2004) use induction:

$$\|e_h(t_n)\| = O(h^{p+1/2}) \Rightarrow \|e_h(t_{n+1})\|_{\infty} = O(h) \Rightarrow \|e_h(t_{n+1})\| = O(h^{p+1/2})$$

If $\|e_h(\vartheta)\|_{\infty} = O(h)$ for all $\vartheta \in (0, t)$, then

$$\|e_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C_T h^{p+1/2},$$

where C_T is independent of h, t.

```
Main theorem
Let p > (d+1)/2. Then
\|e_h\|_{L^{\infty}(L^2)} \le C_T h^{p+1/2}
```

Proof:

- Nonlinear Gronwall-type lemma.
- Continuous mathematical induction (Y. R. Chao, 1919)

・ロト ・四ト ・ヨト

If $\|e_h(\vartheta)\|_{\infty} = O(h)$ for all $\vartheta \in (0, t)$, then

$$\|e_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C_T h^{p+1/2},$$

where C_T is independent of h, t.

Main theorem

Let p > (d+1)/2. Then

$$\|e_h\|_{L^{\infty}(L^2)} \leq C_T h^{p+1/2},$$

Proof:

- Nonlinear Gronwall-type lemma.
- Continuous mathematical induction (Y. R. Chao, 1919)

If $\|\boldsymbol{e}_h(\vartheta)\|_{\infty} = O(h)$ for all $\vartheta \in (0,t)$, then

$$\|e_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C_T h^{p+1/2},$$

where C_T is independent of h, t.

Main theorem

Let p > (d+1)/2. Then

$$\|e_h\|_{L^{\infty}(L^2)} \leq C_T h^{p+1/2},$$

Proof:

• Nonlinear Gronwall-type lemma.

Continuous mathematical induction (Y. R. Chao, 1919)

If $\|e_h(\vartheta)\|_{\infty} = O(h)$ for all $\vartheta \in (0, t)$, then

$$\|e_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C_T h^{p+1/2},$$

where C_T is independent of h, t.

Main theorem

Let p > (d+1)/2. Then

$$\|e_h\|_{L^{\infty}(L^2)} \leq C_T h^{p+1/2},$$

Proof:

- Nonlinear Gronwall-type lemma.
- Continuous mathematical induction (Y. R. Chao, 1919)

Error estimates Method From globally to locally Lipschitz f Implicit

Method of lines Implicit scheme

V. Kučera Error estimates for nonlinear convective problems...

Error estimates Method of lines From globally to locally Lipschitz f Implicit scheme

V. Kučera Error estimates for nonlinear convective problems...

Error estimates Method of lines From globally to locally Lipschitz f Implicit scheme

V. Kučera Error estimates for nonlinear convective problems...

< □ > < □ > < □ > < □ > < □ >

V. Kučera Error estimates for nonlinear convective problems...

V. Kučera Error estimates for nonlinear convective problems...

V. Kučera Error estimates for nonlinear convective problems...

Method of lines Implicit scheme

Continuous (real) mathematical induction

Chao 1919

 $\varphi(t)$ is a propositional function depending on $t \in [0, T]$ s.t.

(*i*)
$$\varphi(0)$$
 is true,

(*ii*) $\exists \delta_0 > 0: \ \varphi(t) \text{ implies } \varphi(t+\delta), \ \forall t, \ \forall \delta \in [0, \delta_0].$

Then $\varphi(t)$ holds for all $t \in [0, T]$.

(日) (圖) (E) (E) (E)

Method of lines Implicit scheme

Continuous (real) mathematical induction

Stronger version

 $\varphi(t)$ is a propositional function depending on $t \in [0, T]$ s.t.

- (*i*) $\varphi(0)$ is true,
- (*ii*) $\forall t \exists \delta_t > 0: \varphi(t) \text{ implies } \varphi(t + \delta), \forall \delta \in [0, \delta_t],$
- (*iii*) $\forall t_1, t_2$: If φ holds on (t_1, t_2) then $\varphi(t_2)$ holds.

Then $\varphi(t)$ holds for all $t \in [0, T]$.

・ロト ・四ト ・ヨト ・ヨト

3

Method of lines Implicit scheme

Proof of the key estimate

Lemma

$$b(u_h,\xi)-b(u,\xi) \leq C\Big(1+\frac{\|e_h(t)\|_{\infty}^2}{h^2}\Big)(h^{2p+1}|u(t)|_{H^{p+1}(\Omega)}^2+\|\xi\|^2)$$

Proof:

$$b(u_h,\xi)-b(u,\xi)=\int_{\Omega} (\mathbf{f}(u)-\mathbf{f}(u_h))\cdot \nabla \xi \,\mathrm{d}x.$$

The Taylor expansion gives us

$$\mathbf{f}(u) - \mathbf{f}(u_h) = \mathbf{f}'(u)\boldsymbol{\xi} + \mathbf{f}'(u)\boldsymbol{\eta} - \frac{1}{2}\mathbf{f}''_{u,u_h}\mathbf{e}_h^2.$$

Thus

 $b(u_h,\xi) - b(u,\xi) = \int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla\xi \,\mathrm{d}x + \int_{\Omega} \mathbf{f}'(u)\eta \cdot \nabla\xi \,\mathrm{d}x - \frac{1}{2}\int_{\Omega} \mathbf{f}''_{u,u_h} e_h^2 \cdot \nabla\xi \,\mathrm{d}x$

・ロ・ ・ 四・ ・ 回・ ・ 回・

э

Method of lines Implicit scheme

Proof of the key estimate

Lemma

$$b(u_h,\xi)-b(u,\xi) \leq C\Big(1+\frac{\|e_h(t)\|_{\infty}^2}{h^2}\Big)\big(h^{2p+1}|u(t)|_{H^{p+1}(\Omega)}^2+\|\xi\|^2\big)$$

Proof:

$$b(u_h,\xi)-b(u,\xi)=\int_{\Omega} (\mathbf{f}(u)-\mathbf{f}(u_h))\cdot \nabla \xi \,\mathrm{d}x.$$

The Taylor expansion gives us

$$\mathbf{f}(u) - \mathbf{f}(u_h) = \mathbf{f}'(u)\boldsymbol{\xi} + \mathbf{f}'(u)\boldsymbol{\eta} - \frac{1}{2}\mathbf{f}''_{u,u_h}\mathbf{e}_h^2.$$

Thus

 $b(u_h,\xi) - b(u,\xi) = \int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla\xi \, \mathrm{d}x + \int_{\Omega} \mathbf{f}'(u)\eta \cdot \nabla\xi \, \mathrm{d}x - \frac{1}{2}\int_{\Omega} \mathbf{f}''_{u,u_h} e_h^2 \cdot \nabla\xi \, \mathrm{d}x$

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・
Method of lines Implicit scheme

Proof of the key estimate

Lemma

$$b(u_h,\xi)-b(u,\xi) \leq C\Big(1+\frac{\|e_h(t)\|_{\infty}^2}{h^2}\Big)(h^{2p+1}|u(t)|_{H^{p+1}(\Omega)}^2+\|\xi\|^2)$$

Proof:

$$b(u_h,\xi)-b(u,\xi)=\int_{\Omega} (\mathbf{f}(u)-\mathbf{f}(u_h))\cdot \nabla \xi \,\mathrm{d}x.$$

The Taylor expansion gives us

$$\mathbf{f}(u) - \mathbf{f}(u_h) = \mathbf{f}'(u)\boldsymbol{\xi} + \mathbf{f}'(u)\boldsymbol{\eta} - \frac{1}{2}\mathbf{f}''_{u,u_h}\mathbf{e}_h^2.$$

Thus

$$b(u_h,\xi) - b(u,\xi) = \int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla\xi \,\mathrm{d}x + \int_{\Omega} \mathbf{f}'(u)\eta \cdot \nabla\xi \,\mathrm{d}x - \frac{1}{2}\int_{\Omega} \mathbf{f}''_{u,u_h} \boldsymbol{e}_h^2 \cdot \nabla\xi \,\mathrm{d}x$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Method of lines Implicit scheme

Proof of the key estimate

$$b(u_h,\xi) - b(u,\xi) = \underbrace{\int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla\xi \, \mathrm{d}x}_{(1)} + \underbrace{\int_{\Omega} \mathbf{f}'(u)\eta \cdot \nabla\xi \, \mathrm{d}x}_{(2)} - \underbrace{\frac{1}{2} \int_{\Omega} \mathbf{f}''_{u,u_h} \mathbf{e}_h^2 \cdot \nabla\xi \, \mathrm{d}x}_{(3)}}_{(3)}$$
$$(1) = -\frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{f}'(u))\xi^2 \, \mathrm{d}x \le C \|\xi\|^2.$$

 $(2) \leq Ch^{p+1}C_{l}h^{-1}\|\xi\| \leq Ch^{2p} + \|\xi\|^{2}.$

 $(3) \le C \|e_h\|_{\infty} \|e_h\| C_l h^{-1} \|\xi\| \le C \frac{\|e_h\|_{\infty}^2}{h^2} (Ch^{2p+2} + \|\xi\|^2) + \|\xi\|^2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Method of lines Implicit scheme

Proof of the key estimate

$$b(u_{h},\xi) - b(u,\xi) = \underbrace{\int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla\xi \, \mathrm{d}x}_{(1)} + \underbrace{\int_{\Omega} \mathbf{f}'(u)\eta \cdot \nabla\xi \, \mathrm{d}x}_{(2)} - \underbrace{\frac{1}{2} \int_{\Omega} \mathbf{f}''_{u,u_{h}} \mathbf{e}_{h}^{2} \cdot \nabla\xi \, \mathrm{d}x}_{(3)}}_{(3)}$$

$$(1) = -\frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{f}'(u))\xi^{2} \, \mathrm{d}x \leq C \|\xi\|^{2}.$$

$$(2) \leq Ch^{p+1}C_{l}h^{-1}\|\xi\| \leq Ch^{2p} + \|\xi\|^{2}.$$

$$(3) \leq C \|\mathbf{e}_{h}\|_{\infty} \|\mathbf{e}_{h}\|C_{l}h^{-1}\|\xi\| \leq C \frac{\|\mathbf{e}_{h}\|_{\infty}^{2}}{h^{2}} (Ch^{2p+2} + \|\xi\|^{2}) + \|\xi\|^{2}.$$

< □ > < □ > < □ > < □ > < □ >

크

Method of lines Implicit scheme

Proof of the key estimate

$$b(u_{h},\xi) - b(u,\xi) = \underbrace{\int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla\xi \, \mathrm{d}x}_{(1)} + \underbrace{\int_{\Omega} \mathbf{f}'(u)\eta \cdot \nabla\xi \, \mathrm{d}x}_{(2)} - \underbrace{\frac{1}{2} \int_{\Omega} \mathbf{f}''_{u,u_{h}} \mathbf{e}_{h}^{2} \cdot \nabla\xi \, \mathrm{d}x}_{(3)}$$

$$(1) = -\frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{f}'(u))\xi^{2} \, \mathrm{d}x \leq C \|\xi\|^{2}.$$

$$(2) \leq Ch^{p+1}C_{l}h^{-1}\|\xi\| \leq Ch^{2p} + \|\xi\|^{2}.$$

$$(3) \leq C \|\mathbf{e}_{h}\|_{\infty} \|\mathbf{e}_{h}\|C_{l}h^{-1}\|\xi\| \leq C \frac{\|\mathbf{e}_{h}\|_{\infty}^{2}}{h^{2}} (Ch^{2p+2} + \|\xi\|^{2}) + \|\xi\|^{2}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Method of lines Implicit scheme

2 From globally to locally Lipschitz f

V. Kučera Error estimates for nonlinear convective problems...

Definition

Let
$$0 = t_0 < t_1 < \cdots < t_{N+1} = T$$
, $\tau_n := t_{n+1} - t_n$

a)
$$u_h^n \in V_h$$
,
b) $\left(\frac{u_h^{n+1}-u_h^n}{\tau_n},\varphi_h\right) + b(u_h^{n+1},\varphi_h) = \ell(\varphi_h)(t_{n+1}),$
 $\forall \varphi_h \in V_h, \forall n = 0, \dots N,$
c) $u_h^0 \approx u(0).$

æ

• $eq(u) - eq(u_h)$

- test by ξ
- estimate *b*, ℓ
- use Gronwall's inequality.

Theorem

There does not exist a Gronwall type lemma which could prove the desired error estimate only from the error equation tested by ξ and estimates of individual terms contained therein.

A D N A D N A D N A D

- $eq(u) eq(u_h)$
- test by ξ
- estimate b, ℓ
- use Gronwall's inequality.

Theorem

There does not exist a Gronwall type lemma which could prove the desired error estimate only from the error equation tested by ξ and estimates of individual terms contained therein.

A D N A D N A D N A D

- $eq(u) eq(u_h)$
- test by ξ
- estimate *b*, *ℓ*
- use Gronwall's inequality.

Theorem

There does not exist a Gronwall type lemma which could prove the desired error estimate only from the error equation tested by ξ and estimates of individual terms contained therein.

- $eq(u) eq(u_h)$
- test by ξ
- estimate *b*, *ℓ*
- use Gronwall's inequality.

Theorem

There does not exist a Gronwall type lemma which could prove the desired error estimate only from the error equation tested by ξ and estimates of individual terms contained therein.

- $eq(u) eq(u_h)$
- test by ξ
- estimate *b*, *ℓ*
- use Gronwall's inequality.

Theorem

There does not exist a Gronwall type lemma which could prove the desired error estimate only from the error equation tested by ξ and estimates of individual terms contained therein.

A (10) A (10) A (10)

Auxiliary problem

Given $\tau \ge 0$ and $U_h \in V_h$, we seek $u_{\tau} \in V_h$ such that

$$\left(rac{u_h^{n+1}-u_h^n}{ au_n}, arphi_h
ight)+b(u_h^{n+1}, arphi_h)=\ell(arphi_h)(t_{n+1}), \quad orall arphi_h\in V_h.$$

By setting $U_h := u_h^n, \tau := \tau_n$, then $u_\tau = u_h^{n+1}$. By setting $U_h := u_h^n, \tau := 0$, then $u_\tau = u_h^n$.

emma (Existence, uniqueness and continuity)

Let $\tau = O(h)$, then $\exists ! u_{\tau} \in V_h$ and $||u_{\tau}||$ depends continuously on τ .

Definition (Continuated discrete solution)

Let $\tilde{u}_h : [0, T] \to V_h$ be such that for $t \in [t_n, t_{n+1}]$ we define $\tilde{u}_h(t) := u_{\tau}$, the solution of the auxiliary problem with $\tau := t - t_n$ and $U_h := u_h^n$. Furthermore, we define $\tilde{e}_h := u - \tilde{u}_h$.

Auxiliary problem

Given $\tau \ge 0$ and $U_h \in V_h$, we seek $u_{\tau} \in V_h$ such that

$$\left(rac{u_{ au}-U_h}{ au}, arphi_h
ight)+big(u_{ au}, arphi_hig)=Iig(arphi_hig)(t), \quad orall arphi_h\in V_h.$$

By setting $U_h := u_h^n, \tau := \tau_n$, then $u_\tau = u_h^{n+1}$. By setting $U_h := u_h^n, \tau := 0$, then $u_\tau = u_h^n$.

emma (Existence, uniqueness and continuity)

Let $\tau = O(h)$, then $\exists ! u_{\tau} \in V_h$ and $||u_{\tau}||$ depends continuously on τ .

Definition (Continuated discrete solution)

Let $\tilde{u}_h : [0, T] \to V_h$ be such that for $t \in [t_n, t_{n+1}]$ we define $\tilde{u}_h(t) := u_{\tau}$, the solution of the auxiliary problem with $\tau := t - t_n$ and $U_h := u_h^n$. Furthermore, we define $\tilde{e}_h := u - \tilde{u}_h$.

Auxiliary problem

Given $\tau \ge 0$ and $U_h \in V_h$, we seek $u_\tau \in V_h$ such that

$$\left(rac{u_{ au}-U_h}{ au}, arphi_h
ight)+big(u_{ au}, arphi_hig)=Iig(arphi_hig)(t), \quad orall arphi_h\in V_h.$$

By setting $U_h := u_h^n$, $\tau := \tau_n$, then $u_\tau = u_h^{n+1}$. By setting $U_h := u_h^n$, $\tau := 0$, then $u_\tau = u_h^{n+1}$.

Lemma (Existence, uniqueness and continuity)

Let $\tau = O(h)$, then $\exists ! u_{\tau} \in V_h$ and $||u_{\tau}||$ depends continuously on τ .

Definition (Continuated discrete solution)

Let $\tilde{u}_h : [0, T] \to V_h$ be such that for $t \in [t_n, t_{n+1}]$ we define $\tilde{u}_h(t) := u_{\tau}$, the solution of the auxiliary problem with $\tau := t - t_n$ and $U_h := u_h^n$. Furthermore, we define $\tilde{e}_h := u - \tilde{u}_h$.

Auxiliary problem

Given $\tau \ge 0$ and $U_h \in V_h$, we seek $u_\tau \in V_h$ such that

$$\left(rac{u_{ au}-U_{h}}{ au}, arphi_{h}
ight)+big(u_{ au}, arphi_{h}ig)=lig(arphi_{h}ig)(t), \quad orall arphi_{h}\in V_{h}.$$

By setting $U_h := u_h^n$, $\tau := \tau_n$, then $u_\tau = u_h^{n+1}$. By setting $U_h := u_h^n$, $\tau := 0$, then $u_\tau = u_h^{n-1}$.

emma (Existence, uniqueness and continuity)

Let $\tau = O(h)$, then $\exists ! u_{\tau} \in V_h$ and $||u_{\tau}||$ depends continuously on τ .

Definition (Continuated discrete solution)

Let $\tilde{u}_h : [0, T] \to V_h$ be such that for $t \in [t_n, t_{n+1}]$ we define $\tilde{u}_h(t) := u_{\tau}$, the solution of the auxiliary problem with $\tau := t - t_n$ and $U_h := u_h^n$. Furthermore, we define $\tilde{e}_h := u - \tilde{u}_h$.

Auxiliary problem

Given $\tau \ge 0$ and $U_h \in V_h$, we seek $u_\tau \in V_h$ such that

$$\left(rac{u_{ au}-U_h}{ au}, arphi_h
ight)+big(u_{ au}, arphi_hig)=Iig(arphi_hig)(t), \quad orall arphi_h\in V_h.$$

By setting $U_h := u_h^n$, $\tau := \tau_n$, then $u_\tau = u_h^{n+1}$. By setting $U_h := u_h^n$, $\tau := 0$, then $u_\tau = u_h^{n-1}$.

Lemma (Existence, uniqueness and continuity)

Let $\tau = O(h)$, then $\exists ! u_{\tau} \in V_h$ and $||u_{\tau}||$ depends continuously on τ .

Definition (Continuated discrete solution)

Let $\tilde{u}_h : [0, T] \to V_h$ be such that for $t \in [t_n, t_{n+1}]$ we define $\tilde{u}_h(t) := u_{\tau}$, the solution of the auxiliary problem with $\tau := t - t_n$ and $U_h := u_h^n$. Furthermore, we define $\tilde{e}_h := u - \tilde{u}_h$.

Auxiliary problem

Given $\tau \ge 0$ and $U_h \in V_h$, we seek $u_{\tau} \in V_h$ such that

$$\left(rac{u_{ au}-U_h}{ au}, arphi_h
ight)+big(u_{ au}, arphi_hig)=lig(arphi_hig)(t), \quad orall arphi_h\in V_h.$$

By setting $U_h := u_h^n$, $\tau := \tau_n$, then $u_\tau = u_h^{n+1}$. By setting $U_h := u_h^n$, $\tau := 0$, then $u_\tau = u_h^{n-1}$.

Lemma (Existence, uniqueness and continuity)

Let $\tau = O(h)$, then $\exists ! u_{\tau} \in V_h$ and $||u_{\tau}||$ depends continuously on τ .

Definition (Continuated discrete solution)

Let $\tilde{u}_h : [0, T] \to V_h$ be such that for $t \in [t_n, t_{n+1}]$ we define $\tilde{u}_h(t) := u_\tau$, the solution of the auxiliary problem with $\tau := t - t_n$ and $U_h := u_h^n$. Furthermore, we define $\tilde{e}_h := u - \tilde{u}_h$.

Method of lines Implicit scheme

Continuation

★ 臣 ▶ ★ 臣

크

Method of lines Implicit scheme

Continuation

ъ

Method of lines Implicit scheme

Continuation

V. Kučera Error estimates for nonlinear convective problems...

Э

Method of lines Implicit scheme

Continuation

V. Kučera Error estimates for nonlinear convective problems...

Remark

Estimates for $\tilde{e}_h \implies$ Estimates for e_h^n , $n = 0, \dots, N+1$.

_emma

If
$$\|\tilde{e}_h(\vartheta)\|_{\infty} = O(h)$$
 for all $\vartheta \in (0, t)$, then

$$\|\tilde{\boldsymbol{e}}_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C(h^{p+1/2}+\tau),$$

Main theorem

Let p > (d+1)/2 and $\tau = O(h^{1+d/2})$. Then

$$\|\tilde{e}_h\|_{L^{\infty}(0,T;L^2(\Omega))} \le C(h^{p+1/2}+\tau),$$

Proof: Continuous mathematical induction.

<ロト <回 > < 回 > < 回 > .

Method of lines Implicit scheme

Remark

Estimates for \tilde{e}_h \implies Estimates for e_{h}^{n} , $n = 0, \dots, N+1$.

Lemma

If
$$\| ilde{e}_h(artheta)\|_{\infty} = O(h)$$
 for all $artheta \in (0,t)$, then

$$\|\tilde{e}_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C(h^{p+1/2}+\tau),$$

・ロト ・四ト ・ヨト ・ヨト

э

Method of lines Implicit scheme

Remark

Estimates for
$$\tilde{e}_h \implies$$
 Estimates for e_h^n , $n = 0, \dots, N+1$.

Lemma

If
$$\| ilde{e}_h(artheta)\|_{\infty} = O(h)$$
 for all $artheta \in (0,t)$, then

$$\|\tilde{\boldsymbol{e}}_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C(h^{p+1/2}+\tau),$$

Main theorem

Let p > (d+1)/2 and $\tau = O(h^{1+d/2})$. Then

$$\|\widetilde{\boldsymbol{e}}_{h}\|_{L^{\infty}(0,T;L^{2}(\Omega))}\leq C(h^{p+1/2}+ au),$$

<ロ> <同> <同> < 同> < 同> < 同> <

æ

Remark

Estimates for $\tilde{e}_h \implies$ Estimates for e_h^n , $n = 0, \dots, N+1$.

Lemma

If
$$\| ilde{e}_h(artheta)\|_{\infty} = O(h)$$
 for all $artheta \in (0,t)$, then

$$\|\tilde{\boldsymbol{e}}_{h}\|_{L^{\infty}(0,t;L^{2}(\Omega))} \leq C(h^{p+1/2}+\tau),$$

Main theorem

Let
$$p > (d+1)/2$$
 and $\tau = O(h^{1+d/2})$. Then

$$\|\widetilde{\boldsymbol{e}}_h\|_{L^\infty(0,T;L^2(\Omega))} \leq C(h^{p+1/2}+ au),$$

Proof: Continuous mathematical induction.

< ロ > < 四 > < 回 > < 回 > < 回 > .

э

Implicit scheme

Prom globally to locally Lipschitz f

< 同 > < 三 > < 三

From globally to locally Lipschitz f

• We assume only $\mathbf{f} \in (C^2(\mathbb{R}))^d$.

- Zhang & Shu modify f far from 𝔅(u) to obtain f ∈ (C²_b(ℝ))^d. This does not change u, but we get a completely new scheme.
- We prove error estimates directly for locally Lipschitz f.

- We assume only $\mathbf{f} \in (C^2(\mathbb{R}))^d$.
- Zhang & Shu modify **f** far from *R*(*u*) to obtain **f** ∈ (C²_b(ℝ))^d. This does not change *u*, but we get a completely new scheme.
- We prove error estimates directly for locally Lipschitz f.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- We assume only $\mathbf{f} \in (C^2(\mathbb{R}))^d$.
- Zhang & Shu modify **f** far from *R*(*u*) to obtain **f** ∈ (C²_b(ℝ))^d. This does not change *u*, but we get a completely new scheme.
- We prove error estimates directly for locally Lipschitz f.

A (10) A (10) A (10)

- Let $h \in (0, h_0), t \in [0, T]$. We define the *admissible set* $\mathscr{U}_h^{ad}(t) := \{ v \in V_h; \|u(t) v\| \le h^{1+d/2} \}.$
- Functions from 𝔐^{ad}_h(t) have values in some fixed compact [-R; R]. Hence, f is Lipschitz continuous on [-R; R].

Lemma

If $u_h(t) \in \mathscr{U}_h^{ad}(t)$, then

$$b_h(u_h,\xi) - b_h(u,\xi) \le C(h^{2p+1} + \|\xi\|^2).$$

- Let $h \in (0, h_0), t \in [0, T]$. We define the *admissible set* $\mathscr{U}_h^{ad}(t) := \{ v \in V_h; \|u(t) v\| \le h^{1+d/2} \}.$
- Functions from $\mathscr{U}_h^{ad}(t)$ have values in some fixed compact [-R; R]. Hence, **f** is Lipschitz continuous on [-R; R].

Lemma

If $u_h(t) \in \mathscr{U}_h^{ad}(t)$, then

$$b_h(u_h,\xi) - b_h(u,\xi) \le C(h^{2p+1} + \|\xi\|^2).$$

・ロト ・四ト ・ヨト ・ヨト

- Let $h \in (0, h_0), t \in [0, T]$. We define the *admissible set* $\mathscr{U}_h^{ad}(t) := \{ v \in V_h; \|u(t) v\| \le h^{1+d/2} \}.$
- Functions from $\mathscr{U}_h^{ad}(t)$ have values in some fixed compact [-R; R]. Hence, **f** is Lipschitz continuous on [-R; R].

Lemma

If $u_h(t) \in \mathscr{U}_h^{ad}(t)$, then

$$b_h(u_h,\xi) - b_h(u,\xi) \le C(h^{2p+1} + \|\xi\|^2).$$

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Lemma

If $u_h(\vartheta) \in \mathscr{U}_h^{ad}(\vartheta)$ for all $\vartheta \in (0, t)$, then

$$\|e_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C_T h^{p+1/2},$$

where C_T is independent of h, t.

Main theorem

Let p > 1 + d/2. Then

$$\|e_h\|_{L^{\infty}(0,T;L^2(\Omega))} \leq C_T h^{p+1/2},$$

Proof: Continuous mathematical induction.

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Lemma

If $u_h(\vartheta) \in \mathscr{U}_h^{ad}(\vartheta)$ for all $\vartheta \in (0, t)$, then

$$\|e_h\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C_T h^{p+1/2},$$

where C_T is independent of h, t.

Main theorem

Let p > 1 + d/2. Then

$$\|e_h\|_{L^{\infty}(0,T;L^2(\Omega))} \leq C_T h^{p+1/2},$$

Proof: Continuous mathematical induction.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Conclusions and outlook

- Estimates for nonlinear convection equations under high regularity assumptions.
- Analysis is valid for higher order elements: p > (d-1)/2.
- Unnatural CFL condition $\tau = O(h^{(1+d)/2})$ for implicit case.
- The situation would improve for higher order discretizations in time, e.g. BDF, space-time DG, ... CFL condition τ = O(h^{(1+d)/2k}) for a k-th order scheme in time.
- Estimates for locally Lipschitz nonlinearities.
- Possible (but technical) for DG.

< 同 > < 三 > < 三

Conclusions and outlook

- Estimates for nonlinear convection equations under high regularity assumptions.
- Analysis is valid for higher order elements: p > (d-1)/2.
- Unnatural CFL condition $\tau = O(h^{(1+d)/2})$ for implicit case.
- The situation would improve for higher order discretizations in time, e.g. BDF, space-time DG, ... CFL condition τ = O(h^{(1+d)/2k}) for a k-th order scheme in time.
- Estimates for locally Lipschitz nonlinearities.
- Possible (but technical) for DG.

• (10) • (10)
- Estimates for nonlinear convection equations under high regularity assumptions.
- Analysis is valid for higher order elements: p > (d-1)/2.
- Unnatural CFL condition $\tau = O(h^{(1+d)/2})$ for implicit case.
- The situation would improve for higher order discretizations in time, e.g. BDF, space-time DG, ... CFL condition τ = O(h^{(1+d)/2k}) for a k-th order scheme in time.
- Estimates for locally Lipschitz nonlinearities.
- Possible (but technical) for DG.

(4月) (1日) (日)

- Estimates for nonlinear convection equations under high regularity assumptions.
- Analysis is valid for higher order elements: p > (d-1)/2.
- Unnatural CFL condition $\tau = O(h^{(1+d)/2})$ for implicit case.
- The situation would improve for higher order discretizations in time, e.g. BDF, space-time DG, ... CFL condition τ = O(h^{(1+d)/2k}) for a k-th order scheme in time.
- Estimates for locally Lipschitz nonlinearities.
- Possible (but technical) for DG.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Estimates for nonlinear convection equations under high regularity assumptions.
- Analysis is valid for higher order elements: p > (d-1)/2.
- Unnatural CFL condition $\tau = O(h^{(1+d)/2})$ for implicit case.
- The situation would improve for higher order discretizations in time, e.g. BDF, space-time DG, ... CFL condition τ = O(h^{(1+d)/2k}) for a k-th order scheme in time.
- Estimates for locally Lipschitz nonlinearities.
- Possible (but technical) for DG.

- Estimates for nonlinear convection equations under high regularity assumptions.
- Analysis is valid for higher order elements: p > (d-1)/2.
- Unnatural CFL condition $\tau = O(h^{(1+d)/2})$ for implicit case.
- The situation would improve for higher order discretizations in time, e.g. BDF, space-time DG, ... CFL condition τ = O(h^{(1+d)/2k}) for a k-th order scheme in time.
- Estimates for locally Lipschitz nonlinearities.
- Possible (but technical) for DG.

Thank you for your attention.

V. Kučera Error estimates for nonlinear convective problems...

- 170