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Algebraic multigrid (AMG)

We have to solve Ax = b, where A ∈ RN×N is

symmetric and positive definite

sparse

A1 ≈ 0, where 1 is all ones vector and 0 is a zero vector

Then the eigenpairs of A are

λk ≈ 0 and vk ≈ (sin(2πkj/N))j for k = 0, 1, . . .

λk � 0 and vk ≈ (sin(2πkj/N))j for k = . . . ,N/2− 2,N/2− 1.

Iterative methods, e.g. Jacobi method or Richardson method:

xn+1 = (I − A)xn + b

and thus for error vectors en = x − xn

en+1 = (I − A)en.

The eigenvalues of the iteration matrix M = I − A are then in (−1, 1) or
in (− 1

2 , 1) if e.g. c · Ax = c · b is considered instead of Ax = b.
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Suppose
e0 =

∑
ck vk .

The iteration process
en+1 = (I − A)en

with the iteration matrix M = I − A ”smoothes” the error:

high frequency components vk of the error are annilihated faster than that with small
frequencies,

or, after some iterations with M the error vector ek contains only the eigenvectors of A with
low eigenmodes,

then ||rn|| = ||b − Axn|| = ||A(x − xn)|| = ||Aen|| � ||en||.

How does the error vector en look like?
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Note that
vT Av =

1
2

∑
i,j

−Aij (vi − vj )
2 +

∑
i,j

Aij v2
i .

The last term is almost zero if row sums of A are almost null.

Denote
en = x − xn, rn = b − Axn = Aen,

and
En = enT rn = enT Aen, Rn =

∑
i

(rn
i )

2/Aii .

Thus
||rn|| � ||en||

is equivalent to
Rn � En.

We have

E2
n = (enT rn)2 ≤

∑
(en

i )
2Aii ·

∑
(rn

k )
2/Akk = Rn

∑
(en

i )
2Aii � En

∑
(en

i )
2Aii

thus En �
∑

(en
i )

2Aii , which yields

En = enT Aen =
1
2

∑
i,j

−Aij (en
i − en

j )
2 �

∑
(en

i )
2Aii .

There is almost no difference between ”strongly connected” components of the error vector in
case Rn � En.
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Summary. For en = x − xn

en contains low frequency vectors,

ei ≈ ek whenever Aik � 0.

Need for eliminating the error components with low frequencies leads to construction and solution
of a smaller ”coarser” problems.

Two main approaches:

geometric MG - exploiting the properties of the equation, of physics and of the geometry of
the underlying problem,

algebraic MG - like a black-box; easier to apply; but no hint from the original problem,

special approach aggregation based algebraic MG
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aggregation based algebraic MG - how to construct the coarse problem

Let rows of R ∈ RNc×N be (approximations of) low frequency vectors of A, Nc < N.
Let the coarse matrix and the coarse right hand side be

Ac = RART , rc = Rrn,

then
Acuc = rc

is a restriction of the problem to a ”coarser mesh” and

xn
new = xn + RT uc

is a better approximation to x .
We need Ac sparse, thus R must contain many zeros,

R =

 × × 0 . . . . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 × ×

 ,

i.e. R must have piecewise constant rows.
For example, ones in positions of strong connections.
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The resulting iterative process is

xk+1,1 = (I − A)xk + b

xk+1 =
(

I − RT A−1
c RA

)
xk+1,1 + RT A−1

c Rb.

and the resulting iteration matrix is

MMG = (I − RT A−1
c RA)(I − A).

Spectra of I − A and of MMG are

σ(I − A) −1� λN ≤ λN−1 ≤ . . . . . . · · · ≤ λ2 ≤ λ1 < 1

σ(MMG) −1� λN ≤ λN−1 ≤ · · · ≤ λ(≈ Nc+1) � 1
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MG - rules for aggregation

geometric MG - according to the location of elements, properties of FEs and to the operator of the
problem, [P. Vaněk, ... many papers].

algebraic MG - according to the ”strength of the connection”, size of the corresponding
offdiagonal elements, [e.g. A. Brandt, Algebraic multigrid theory: The symmetric case, 1983].
Advantageous in case of singularities, narrow shapes, etc.

Examples prepared by E. Dvořáková according to [Y. Notay, 2011].

a) Laplace operator with anizotropy,
b) linear elasticity,

in both cases Dirichlet boundary conditions are used.

We compare spectral radii of I − A and of MMG for various choices of groups.
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a) Laplace operator
with anizotropy

Table: Spectral radii of iteration matrices.

mesh 0.1 0.05 0.025 0.0125

I − A 0.5525 0.8775 0.9721 0.9466
MG according to numbering of nodes 0.3202 0.7428 0.8647 0.9466
MG with slow eigenvectors 0.1926 0.2341 0.3586 0.4127
MG with Notay’s pairs 0.2362 0.4639 0.6915 0.7741
MG with Notay’s pairs of pairs 0.2450 0.6086 0.7919 0.8653
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b) linear elasticity

Table: Spectral radii of iteration matrices.

mesh 0.1 0.05 0.025

I − A 0.4918 0.8653 0.9705
MG according to numbering of nodes 0.3040 0.6663 0.7819
MG with slow eigenvectors 0.1427 0.2431 0.3204
MG with pairs of x-y displacements 0.4558 0.8338 0.9604
MG with Notay’s pairs 0.2107 0.7113 0.7870
MG with Notay’s pairs of pairs 0.2399 0.7880 0.8813

(CTU in Prague) Algebraic MG for stochastic matrices PANM 16, 2012 11 / 30



Symmetric vs. nonsymmetric MG

. . . It means, MG for symmetric and nonsymmetric marices.

Theorem. The MG method converges for symmetric matrix A for any kind of aggregation and for
any number of smoothing steps within one multigrid cycle.

No analogous statement has been proved for the nonsymmetric case - stochastic matrices.

However, the MG algorithms for nonsymmetric problems exist and can be studied. ”Mostly they
converge.” The heuristical explanation of their fast convergence is based on similarity with the
symmetric case.
[H. De Sterck, T. A. Manteuffel, S. F. McCormick, Q. Nguyen and J. Ruge . . . many papers 2008 -
2012]

But, there are basic differences between symmetric and nonsymmetric MG.

Application of MG to the solution of Markov chains - special name: iterative aggregation -
disaggregation (IAD) methods.
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Problem description.

We assume an irreducible N × N column stochastic matrix B, i.e.

B ≥ 0 and eT B = eT .

Find stationary probability distribution vector (Perron eigenvector) of a column stochastic
matrix, i.e. find x such that

Bx = x , eT x = 1

or
(I − B)x = 0, eT x = 1.

Perron-Frobenius theorem.

Solution

Direct solvers.

Numerical solution. Power method, Jacobi m., Gauss-Seidel m., their block modifications.
Iteration matrix T = M−1W , where I − B = M −W , is a regular splitting (M−1 ≥ 0, W ≥ 0).
For example: M = I, M = block-diagonal of I − B, M = block-upper-triangle of I − B, . . . .

Multilevel methods, based on aggregation of states: iterative aggregation - disaggregation
(IAD) methods. Motivation from PDEs. BUT no symmetry here.
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Example. Find stationary probability distribution of the random process with five states
characterized by probabilities Bij of transition from j to i .

B =


0 0.3 0 0.6 0

0.9 0 0 0 0
0 0.7 0.7 0.3 0
0 0 0.1 0.1 1

0.1 0 0.2 0 0

.

Vector x is x ≈


0.1390
0.1251
0.4609
0.1691
0.1061

.
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Notation

Set of events {1, 2, 3, . . . ,N} divided into n groups G1,G2, . . . ,GNc ,

∪Nc
j=1Gj , Gj ∩ Gk = ∅, when j 6= k .

Communication matrices R (fine to coarse level) and S(x) (coarse to fine) are e.g. for
G1 = {1, 2}, G2 = {3, 4, 5}

R =

(
1 1 0 0 0
0 0 1 1 1

)
, S(y) =


1/3 0
2/3 0
0 2/6
0 3/6
0 1/6

 , if y =
1

12


2
4
2
3
1

 .

Aggregated matrix RBS(y) =

=

(
1 1 0 0 0
0 0 1 1 1

)
0 0 0 0.1 0
0 0.3 0.5 0 1
0 0 0.5 0 0
1 0.4 0 0 0
0 0.3 0 0.9 0




1/3 0
2/3 0
0 2/6
0 3/6
0 1/6

 =

(
1/5 23/60
4/5 37/60

)
.

Projection P(y) = S(y)R .
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Algorithm of IAD method for Bx = x .

1. Choose initial approximation x0. Set k := 0.
2. Solve (small) Nc × Nc problem

RBS(xk )z = z.

(z is carried out exactly.)
3. Prolong z from RNc to the original size RN ,

y = S(xk )z,

and apply ν steps of (large) basic iteration T ∈ RN×N ,

xk+1 = Tνy .

4. If ||xk+1 − xk || small then STOP, else k := k + 1 and GOTO Step 2.

[W. J. Stewart, Introduction to the Numerical Solutions of Markov Chains, 1994,
P. Buchholz, T. Dayar, G. Horton, S. T. Leutenegger, U. R. Krieger, A. N. Langville, C. D. Meyer]

Error propagation formula

xk+1 − x = J(xk )(xk − x),

where
J(xk ) = Tν

(
I − P(xk )(B − xeT )

)−1 (
I − P(xk )

)
, P(xk ) = S(xk )R.

[I. Marek, P. Mayer, 1998]. (Exploited for local convergence proofs.)
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Comparison of the error propagation matrices of AMG and of IAD

Note
I − B ≈ A, B ≈ I − A.

AMG:

MMG = (I − A)
(

I − RT (RART )−1RA
)

IAD:

J(xk ) = B
(

I − P(xk )(B − xeT )
)−1

(I − P(xk ))

= . . .

= B
(

I − S(xk )
(

R(I − Z )S(xk )
)−1

R(I − B)

)
where

Z = B − xeT .
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Small example
Stochastic matrix

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0

 , x =

 1/3
1/3
1/3



Power method yields a convergent sequence xk for all starting x0. Note ρ(B − xeT ) = 1/2.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields divergent (oscillating) sequence xk for almost all starting x0. Note ρ(J(x)) = 1.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields exact solution after the second step x2 = x for any starting x0. Note ρ(J(x)) = 0.

(CTU in Prague) Algebraic MG for stochastic matrices PANM 16, 2012 20 / 30



Small example
Stochastic matrix

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0

 , x =

 1/3
1/3
1/3



Power method yields a convergent sequence xk for all starting x0. Note ρ(B − xeT ) = 1/2.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields divergent (oscillating) sequence xk for almost all starting x0. Note ρ(J(x)) = 1.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields exact solution after the second step x2 = x for any starting x0. Note ρ(J(x)) = 0.

(CTU in Prague) Algebraic MG for stochastic matrices PANM 16, 2012 20 / 30



Small example
Stochastic matrix

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0

 , x =

 1/3
1/3
1/3



Power method yields a convergent sequence xk for all starting x0. Note ρ(B − xeT ) = 1/2.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields divergent (oscillating) sequence xk for almost all starting x0. Note ρ(J(x)) = 1.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields exact solution after the second step x2 = x for any starting x0. Note ρ(J(x)) = 0.

(CTU in Prague) Algebraic MG for stochastic matrices PANM 16, 2012 20 / 30



Small example
Stochastic matrix

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0

 , x =

 1/3
1/3
1/3



Power method yields a convergent sequence xk for all starting x0. Note ρ(B − xeT ) = 1/2.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields divergent (oscillating) sequence xk for almost all starting x0. Note ρ(J(x)) = 1.

The IAD method with T = B, ν = 1 and aggregation

B =

 1/2 0 1/2
1/2 0 1/2
0 1 0


yields exact solution after the second step x2 = x for any starting x0. Note ρ(J(x)) = 0.

(CTU in Prague) Algebraic MG for stochastic matrices PANM 16, 2012 20 / 30



Multi-level IAD procedure (input: B, x ; output: y )

1. Construct T and apply µ steps of pre-smoothing: x := Tµx .

2. If size(B) < τ solve RBS(xk )z = z

else call Multi-level IAD procedure (input: RBS(x), Rx ; output: z).

3. Prolong z to x := S(x)z.

4. Apply ν steps of post-smoothing y := Tνx .

[H. De Sterck, T. A. Manteuffel, S. F. McCormick, Q. Nguyen and J. Ruge, 2009, 2010,
E. Treister, I. Yavneh, 2011, . . . ]

Choice of aggregates is very important.

Mostly according to ”strong connections” between states.
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NCD Markov chains

Nearly completely decomposable (NCD) Markov chains:
Diagonal blocks of much larger magnitude than the off-diagonal blocks; their largest eigenvalues
close to one; other eigenvalues separated from one.
Sufficient for global convergence of IAD [W. J. Stewart, 1994].
Main drawback: hard to recognize whether a matrix is NCD or not.

Non-zero pattern of B

B has a positive row or column or diagonal, and T = αB + (1− α)I, ν = 1 are sufficient for local
convergence. [I. Marek, I. Pultarová, 2006].

Special choice of groups (”1,1,. . . ,1,N1”) and T = B, ν = 1: necessary and sufficient cond. for
global convergence. Estimate of the asymptotic rate of convergence. [I. Ipsen, S. Kirkland, 2006].

General choice of groups and T = B, ν = 1: necessary and sufficient cond. for local convergence.
Estimate of the asymptotic rate of convergence. [I. Pultarová, 2008].

(Proofs based on relations λ2(B) ≤ τ(B) = 1
2 maxi,j ||Bei − Bej ||1 for localization of spectra

[E. Seneta, 1984] and on stochastic complement formulation.)
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B symmetric or similar to symmetric

B either symmetric (this means B is doubly stochastic and x = e/N) or B = D Sym D−1,

example B =

(
1/2 1
1/2 0

)
=

( √
2 0

0 1

)(
1/2 1/

√
2

1/
√

2 0

)(
1/
√

2 0
0 1

)
.

Every 2-level IAD method with TB = BT and ν ≥ 1 steps of smoothing converges locally, i.e.
ρ(J(x)) < 1, [I. Pultarová, I. Marek, 2011].

B non-symmetric

For any K > 0 there exists (even doubly) stochastic B of size less than 4K that ρ(J(x)) > K .
[I. Pultarová, I. Marek, 2011].

Examples constructed for T = B, ν = K , five-diagonal permutation stochastic matrices B of type

obtained from by Cuthill-McKee algorithm.
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Let B be cyclic defined by the Figure . . .

Let N = 600 and number of groups n = 20, each of size 30.

Let T = BN/2−1.

The spectrum of J(x) is . . .
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Multilevel IAD

Reduction and prolongation matrices between levels k and k + 1 denoted by Rk and Sk (y).
Then for the m-levels IAD algorithm we have projections

Pjk (y) = Sj (y)Sj+1(y) . . .Sk−1(y)Rk−1 . . .Rj+1Rj , j < k .

Error propagation formula

m-level IAD algorithm with no pre-smoothing and with νk steps of the post-smoothing on level k .

The error propagation matrix in step p of the IAD algorithm

xp+1 − x = J(xp)(xp − x),

where

J(y) = Tν1
1

m−1∏
s=2

(P1,s(y)Ts)
νs (I − P1,m(y)Z )−1(I − P1,m(y)) +

+Tν1
1

m−1∑
r=2

r−1∏
s=2

(P1,s(y)Ts)
νs

νr−1∑
t=0

(P1,r (y)Tr )
t (I − P1,r (y)).

[I. Pultarová, I. Marek, 2011]
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Theorem. The error in the cycle n of a multi-level IAD methods with an arbitrary number of levels
L ≥ 2 and with one pre-smoothing step and with one post-smoothing step in every level,
µm = νm = 1, m = 1, 2, . . . , L− 1, is xn+1 − x = J (xn) (xn − x), where

J(xn) = T
L−1∏
k=2

(Pk T )(I − PLZ )−1
L−1∑
k=1

(Pk − Pk+1)Mk−1

+T
L−2∑
m=1

m∏
k=2

(Pk T )
m∑

k=1

(Pk − Pk+1)Mk−1,

where M0 = T and

Mk =
(
T +

k∑
j=2

TPj (T − I)
)
T ,

for k = 1, 2, . . . , L− 2, P1 = I and

Pk = P(u1, u2, . . . , uk−1)1k = S(u1)1 . . .S(uk−1)k−1Rk−1 . . .R1,

for k = 2, 3, . . . , L, where u1 = Txn, u2 = R1T 2xn, u3 = R2R1TP2T 2xn and

uk = Rk−1 . . .R1TPk−1TPk−2 . . .TP3TP2T 2xn,

for k = 4, . . . , L− 1. [I. Pultarová, to appear]
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Multi-level IAD with m > 2 levels

Error propagation formula available.

Consider these hypotheses:

If the number of basic iteration is increased, then the convergence is faster.

If the sum of the numbers of basic iterations before the coarse step and after it remains the
same, then the rate of convergence is the same.

If m-level IAD is locally convergent then (m + 1)-level IAD is locally convergent.

If (m + 1)-level IAD is locally convergent then m-level IAD is locally convergent.

If B symmetric and TB = BT then m-level IAD is locally convergent.
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If (m + 1)-level IAD is locally convergent then m-level IAD is locally convergent.

If B symmetric and TB = BT then m-level IAD is locally convergent.
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If (m + 1)-level IAD is locally convergent then m-level IAD is locally convergent. NO

If B symmetric and TB = BT then m-level IAD is locally convergent. ???
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Conclusions

Necessary and sufficient conditions for local convergence of IAD for T = B, ν = 1.

Local convergence depends ONLY on non-zero pattern of B for T = αB +(1−α)I and ν = 1,
but not in the case of ν > 1,
and not in the case of three or more levels.

Symmetric B,T leads to local convergence if TB = BT and ν ≥ 1, i.e. ρ(J(x)) < 1.
Non-symmetric B ∈ RN×N can cause ρ(J(x)) > N/4.

No relation between convergence of m-level and (m + 1)-level IAD methods.

Open questions

Does B,T symmetric, TB = BT yield local convergence also for multi-level IAD?

How many cumulative points can a sequence of xk have? Finite number of them?

Main question. Does local convergence always imply global convergence?
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”. . . The improvement of AMG schemes is a hot research topic. . . . ”

. . . Yvan Notay, An aggregation-based multigrid method, ETNA, 2010
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