SMOOTH APPROXIMATION OF DATA WITH APPLICATIONS TO INTERPOLATING AND SMOOTHING

Karel Segeth
Institute of Mathematics, Academy of Sciences, Prague

CONTENTS

- The problem of interpolating and smoothing
- Smooth approximation in 1D
- Examples of basis systems
- Numerical experiments

PROBLEM OF APPROXIMATION

The usual problem is: We have a finite number of measured (sampled) function values f_{j} obtained at a finite number of nodes X_{j} but we are interested also in the intermediate values corresponding to other points.

Let us have N such (complex, in general) values $f_{1}, f_{2}, \ldots, f_{N} \in C$ measured at N mutually distinct nodes $X_{1}, X_{2}, \ldots, X_{N} \in R^{n}$.

Assume that $f_{j}=f\left(X_{j}\right)$ are measured values of some continuous function f while z is an approximating function to be constructed.

We put $n=1$ in what follows.

INTERPOLATION

The condition for the construction of the approximating function z is

$$
z\left(X_{j}\right)=f\left(X_{j}\right), \quad j=1, \ldots, N
$$

Possible additional conditions: analogical equalities for the derivatives of z or minimization of some functionals applied to z.
There are many solutions z of different behavior between the nodes and different smoothness that satisfy the above equalities.

MORE GENERAL: SMOOTHING

Instead of satisfying the above equalities, we usually minimize the expression

$$
\sum_{j=1}^{N}\left(z\left(X_{j}\right)-f_{j}\right)^{2}
$$

each term possibly multiplied by some weight (smoothing by the least squares method).
Additional conditions can be formulated, too.

SMOOTH APPROXIMATION

Let \widetilde{W} be a linear vector space of complex functions g continuous together with their derivatives of all orders on the interval (a, b), which may be infinite. Let $\left\{B_{l}\right\}_{l=0}^{\infty}$ be a sequence of nonnegative numbers and let there be the smallest nonnegative integer L such that $B_{L}>0$.

Put

$$
(g, h)_{L}=\sum_{l=0}^{\infty} B_{l} \int_{a}^{b}\left[g^{(I)}(x)\right]^{*} h^{(I)}(x) \mathrm{d} x
$$

where * denotes the complex conjugate. Further put $|g|_{L}=\sqrt{(g, g)_{L}}$, i.e.

$$
|g|_{L}^{2}=\sum_{l=0}^{\infty} B_{l} \int_{a}^{b}\left|g^{(l)}(x)\right|^{2} \mathrm{~d} x
$$

SMOOTH APPROXIMATION

If the value of $|g|_{L}$ exists and is finite it is the seminorm of the function g. If the same is true also for the function h then $(g, h)_{L}$ has the properties of the inner product of g and h. The set of these functions forms the Hilbert space W corresponding to the sequence $\left\{B_{l}\right\}_{l=0}^{\infty}$.

If $B_{0}>0$ (i.e. $L=0$) the expression $|g|_{0}=\|g\|$ is the norm on W.

PROBLEM OF SMOOTH INTERPOLATION

Choose a system of functions $g_{k} \in W, k=1,2, \ldots$, that is complete and orthogonal (with respect to the inner product in W), i.e.,

$$
\left(g_{k}, g_{n}\right)_{L}=0 \quad \text { for } k \neq n, \quad\left(g_{k}, g_{k}\right)_{L}=\left|g_{k}\right|_{L}^{2}>0
$$

Put

$$
z(x)=t(x)+\sum_{k=1}^{\infty} A_{k} g_{k}(x), \quad\left|g_{k}\right|_{L} \neq 0, \quad t(x)=\sum_{p=0}^{L-1} a_{p} \varphi_{p}(x)
$$

where $\left\{\varphi_{p}\right\}, p=0,1, \ldots, L-1$, is a set of mutually orthogonal functions from W such that

$$
\left(\varphi_{p}, \varphi_{q}\right)_{L}=0, \quad p, q=0,1, \ldots, L-1
$$

The set $\left\{\varphi_{p}\right\}$ is empty for $L=0$.

PROBLEM OF SMOOTH INTERPOLATION

The problem of smooth interpolation is to find the coefficients of the expression

$$
z(x)=\sum_{p=0}^{L-1} a_{p} \varphi_{p}(x)+\sum_{k=1}^{\infty} A_{k} g_{k}(x)
$$

such that

$$
z\left(X_{j}\right)=f_{j}, \quad j=1, \ldots, N
$$

and
the quantity $|z|_{L}$ attains its minimum.
A. Talmi, G. Gilat: Method for smooth approximation of data. J. Comput. Phys. 23 (1977), 93-123.

PROBLEM OF SMOOTH INTERPOLATION

Put

$$
R_{L}(x, y)=\sum_{k=1}^{\infty} \frac{g_{k}(x) g_{k}^{*}(y)}{\left|g_{k}\right|_{L}^{2}}
$$

Theorem. Let the series $R_{L}(x, y)$ converges for all $x, y \in(a, b)$.
Then the problem of smooth approximation has the unique solution

$$
z(x)=\sum_{p=0}^{L-1} a_{p} \varphi_{p}(x)+\sum_{j=1}^{N} \lambda_{j} R_{L}\left(x, X_{j}\right)
$$

where the coefficients a_{p} and λ_{j} are the solution of the system of $N+L$ linear algebraic equations

$$
\sum_{j=1}^{N} \lambda_{j} \varphi_{p}\left(X_{j}\right)=0, \quad p=0,1, \ldots, L-1
$$

$$
\sum_{p=0}^{L-1} a_{p} \varphi_{p}\left(X_{i}\right)+\sum_{j=1}^{N} \lambda_{j} R_{L}\left(X_{i}, X_{j}\right)=f_{i}, \quad i=1, \ldots, N .
$$

EXAMPLES OF BASIS FUNCTION SYSTEMS COMPLEX EXPONENTIAL FUNCTIONS

Let the function f to be approximated be periodic, e.g. $f(x)=f(x+2 \pi)$. The possible choice of the basis functions is

$$
g_{k}(x)=\exp (i k x), \quad k=\ldots,-2,-1,0,1,2, \ldots
$$

This range of k requires a small change in the above formulae. It is easy to show that the system is complete and orthogonal with respect to the above introduced inner product $(g, h)_{0}$,

$$
\left\|g_{k}\right\|^{2}=2 \pi \sum_{l=0}^{\infty} B_{l} k^{2 l}, \quad \text { and } \quad R_{0}(x, y)=\sum_{k=-\infty}^{\infty} \frac{\exp (i k(x-y))}{\left\|g_{k}\right\|^{2}}
$$

EXAMPLES OF BASIS FUNCTION SYSTEMS
 I: TRANSFORMED COMPLEX EXPONENTIAL FUNCTIONS
 Numerical results in graphs are denoted by the green dashed line

Let the function f to be approximated be nonperiodic on $(-\infty, \infty), f^{(I)}(\pm \infty)=0$ for all $I \geq 0$. The system of complex exponential functions is transformed into $(-\infty, \infty)$. By this passage, we also obtain

$$
R_{0}(x, y)=\int_{k=-\infty}^{\infty} \frac{\exp (i k(x-y))}{\left\|g_{k}\right\|^{2}} \mathrm{~d} k
$$

Putting, in particular, $B_{I}=D^{2 I} /(2 I)!, 0<D<1$, and denoting $r=|x-y|$, we obtain

$$
R_{0}(x, y)=\frac{1}{2 D \cosh (\pi r /(2 D))}
$$

We use $D=\frac{1}{3}$ for numerical experiments.

EXAMPLES OF BASIS FUNCTION SYSTEMS II: ORTHONORMALIZED MONOMIALS

Numerical results in graphs are denoted by the black dotted line
Let the function f to be approximated be nonperiodic on $(-1,1)$. The system of monomials

$$
h_{k}(x)=x^{k}, \quad k=0,1,2, \ldots,
$$

is orthonormalized numerically on $(-1,1)$ by the Gram-Schmidt procedure with respect to the inner product $(g, h)_{0}$. All computations, including the substitution in the series for $R_{0}(x, y)$, are carried out numerically.
We use $B_{I}=D^{2 I} /(2 I)!, D=\frac{1}{3}$ for numerical experiments.
K. Segeth: Smooth approximation and its application to some 1D problems. Proc. Conference Applications of Mathematics 2012. Prague, Institute of Mathematics of the AS CR 2012, 243-252.

EXAMPLES OF BASIS FUNCTION SYSTEMS III: TRANSFORMED COMPLEX EXPONENTIAL FUNCTIONS WITH A SPECIAL CHOICE OF B_{1}

Numerical results in graphs are denoted by the cyan dashed line
We consider the complex exponential functions transformed to $(-\infty, \infty)$. In the definition of inner product, we put $B_{I}=0$ for all I with the exception of $B_{2}=1$. It means that we minimize the L^{2} norm of the second derivative of the interpolant z.
We arrive at $R_{2}(x, y)=|x-y|^{3}$ and the function t has the form

$$
t(x)=a_{0}+a_{1} x
$$

It is easy to find out that such a smooth approximation is, in fact, the well-known cubic spline interpolation.

COMPUTATIONAL COMPARISON WITH CLASSICAL INTERPOLATION

0: EXACT SOLUTION

Numerical results in graphs are denoted by the red solid line
IV: POLYNOMIAL INTERPOLATION
Numerical results in graphs are denoted by the blue dotted line
V: RATIONAL INTERPOLATION
Numerical results in graphs are denoted by the magenta dash-dot line

SMOOTH INTERPOLATION OF A SMOOTH FUNCTION

The function

$$
f(x)=\frac{1}{1+16 x^{2}}
$$

has "almost a pole" at $x=0$. We constructed the smooth as well as classical interpolation in several both equidistant and nonequidistant grids.
The results for the equidistant grid with $N=5$ follow. The rational interpolation is identical to the true function.

SMOOTH INTERPOLATION OF A SMOOTH FUNCTION RESULT

SMOOTH INTERPOLATION OF A SMOOTH FUNCTION ERROR

SMOOTH INTERPOLATION OF A NONSMOOTH FUNCTION

The function

$$
f(x)=3(x+1)^{2}+\ln \left(\left(\frac{1}{10} x\right)^{2}+10^{-5}\right)+1
$$

has "almost a singularity" at $x=0$. We constructed the smooth as well as classical interpolation in several both equidistant and nonequidistant grids.
The results for the equidistant grid with $N=5$ follow except for the very inaccurate results obtained by the rational interpolation.

SMOOTH INTERPOLATION OF A NONSMOOTH FUNCTION

 RESULT

SMOOTH INTERPOLATION OF A NONSMOOTH FUNCTION

 ERROR

