# SMOOTH APPROXIMATION OF DATA WITH APPLICATIONS TO INTERPOLATING AND SMOOTHING

Karel Segeth Institute of Mathematics, Academy of Sciences, Prague

イロト イロト イヨト イヨト ショー うへつ

# CONTENTS

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ \_ 圖 \_ のへで

- The problem of interpolating and smoothing
- Smooth approximation in 1D
- Examples of basis systems
- Numerical experiments

### PROBLEM OF APPROXIMATION

The usual problem is: We have a finite number of measured (sampled) function values  $f_j$  obtained at a finite number of nodes  $X_j$  but we are interested also in the intermediate values corresponding to other points.

Let us have N such (complex, in general) values  $f_1, f_2, \ldots, f_N \in C$ measured at N mutually distinct nodes  $X_1, X_2, \ldots, X_N \in R^n$ .

Assume that  $f_j = f(X_j)$  are measured values of some continuous function f while z is an approximating function to be constructed.

We put n = 1 in what follows.

## INTERPOLATION

The condition for the construction of the approximating function z is

$$z(X_j) = f(X_j), \quad j = 1, \ldots, N.$$

Possible additional conditions: analogical equalities for the derivatives of z or minimization of some functionals applied to z. There are many solutions z of different behavior between the nodes and different smoothness that satisfy the above equalities.

# MORE GENERAL: SMOOTHING

Instead of satisfying the above equalities, we usually minimize the expression N

$$\sum_{j=1}^n (z(X_j)-f_j)^2,$$

each term possibly multiplied by some weight (smoothing by the least squares method).

Additional conditions can be formulated, too.

## SMOOTH APPROXIMATION

Let W be a linear vector space of complex functions g continuous together with their derivatives of all orders on the interval (a, b), which may be infinite. Let  $\{B_I\}_{I=0}^{\infty}$  be a sequence of nonnegative numbers and let there be the smallest nonnegative integer L such that  $B_L > 0$ .

Put

$$(g,h)_L = \sum_{l=0}^{\infty} B_l \int_a^b [g^{(l)}(x)]^* h^{(l)}(x) dx,$$

where \* denotes the complex conjugate. Further put  $|g|_L = \sqrt{(g,g)_L}$ , i.e.

$$|g|_{L}^{2} = \sum_{l=0}^{\infty} B_{l} \int_{a}^{b} |g^{(l)}(x)|^{2} dx$$

### SMOOTH APPROXIMATION

If the value of  $|g|_L$  exists and is finite it is the *seminorm* of the function g. If the same is true also for the function h then  $(g, h)_L$  has the properties of the *inner product* of g and h. The set of these functions forms the Hilbert space W corresponding to the sequence  $\{B_I\}_{I=0}^{\infty}$ .

If  $B_0 > 0$  (i.e. L = 0) the expression  $|g|_0 = ||g||$  is the norm on W.

### PROBLEM OF SMOOTH INTERPOLATION

Choose a system of functions  $g_k \in W$ , k = 1, 2, ..., that is complete and orthogonal (with respect to the inner product in W), i.e.,

$$(g_k, g_n)_L = 0$$
 for  $k \neq n$ ,  $(g_k, g_k)_L = |g_k|_L^2 > 0$ .

Put

$$z(x) = t(x) + \sum_{k=1}^{\infty} A_k g_k(x), \quad |g_k|_L \neq 0, \quad t(x) = \sum_{p=0}^{L-1} a_p \varphi_p(x),$$

where  $\{\varphi_p\}$ , p = 0, 1, ..., L - 1, is a set of mutually orthogonal functions from W such that

$$(\varphi_p, \varphi_q)_L = 0, \quad p, q = 0, 1, \dots, L-1.$$

The set  $\{\varphi_p\}$  is empty for L = 0.

### PROBLEM OF SMOOTH INTERPOLATION

The problem of smooth interpolation is to find the coefficients of the expression

$$z(x) = \sum_{p=0}^{L-1} a_p \varphi_p(x) + \sum_{k=1}^{\infty} A_k g_k(x)$$

such that

$$z(X_j)=f_j, \quad j=1,\ldots,N,$$

and

the quantity  $|z|_L$  attains its minimum.

A. Talmi, G. Gilat: Method for smooth approximation of data. J. Comput. Phys. 23 (1977), 93–123.

ション ふぼう ふぼう ふほう うらの

### PROBLEM OF SMOOTH INTERPOLATION

Put

$$R_L(x,y) = \sum_{k=1}^{\infty} \frac{g_k(x)g_k^*(y)}{|g_k|_L^2}.$$

**Theorem.** Let the series  $R_L(x, y)$  converges for all  $x, y \in (a, b)$ . Then the problem of smooth approximation has the unique solution

$$z(x) = \sum_{p=0}^{L-1} a_p \varphi_p(x) + \sum_{j=1}^N \lambda_j R_L(x, X_j),$$

where the coefficients  $a_p$  and  $\lambda_j$  are the solution of the system of N + L linear algebraic equations

$$\sum_{j=1}^{N} \lambda_j \varphi_p(X_j) = 0, \quad p = 0, 1, \dots, L-1,$$
$$\sum_{p=0}^{L-1} a_p \varphi_p(X_i) + \sum_{j=1}^{N} \lambda_j R_L(X_i, X_j) = f_i, \quad i = 1, \dots, N.$$

# EXAMPLES OF BASIS FUNCTION SYSTEMS COMPLEX EXPONENTIAL FUNCTIONS

Let the function f to be approximated be periodic, e.g.  $f(x) = f(x + 2\pi)$ . The possible choice of the basis functions is

$$g_k(x) = \exp(ikx), \quad k = \dots, -2, -1, 0, 1, 2, \dots$$

This range of k requires a small change in the above formulae. It is easy to show that the system is complete and orthogonal with respect to the above introduced inner product  $(g, h)_0$ ,

$$||g_k||^2 = 2\pi \sum_{l=0}^{\infty} B_l k^{2l}$$
, and  $R_0(x, y) = \sum_{k=-\infty}^{\infty} \frac{\exp(ik(x-y))}{||g_k||^2}$ .

EXAMPLES OF BASIS FUNCTION SYSTEMS I: TRANSFORMED COMPLEX EXPONENTIAL FUNCTIONS Numerical results in graphs are denoted by the green dashed line

Let the function f to be approximated be nonperiodic on  $(-\infty, \infty)$ ,  $f^{(I)}(\pm \infty) = 0$  for all  $I \ge 0$ . The system of complex exponential functions is transformed into  $(-\infty, \infty)$ . By this passage, we also obtain

$$R_0(x,y) = \int_{k=-\infty}^{\infty} \frac{\exp(\mathrm{i}k(x-y))}{\|g_k\|^2} \,\mathrm{d}k.$$

Putting, in particular,  $B_l = D^{2l}/(2l)!$ , 0 < D < 1, and denoting r = |x - y|, we obtain

$$R_0(x,y) = \frac{1}{2D\cosh(\pi r/(2D))}.$$

We use  $D = \frac{1}{3}$  for numerical experiments.

# EXAMPLES OF BASIS FUNCTION SYSTEMS II: ORTHONORMALIZED MONOMIALS

Numerical results in graphs are denoted by the black dotted line

Let the function f to be approximated be nonperiodic on (-1, 1). The system of monomials

$$h_k(x) = x^k, \quad k = 0, 1, 2, \ldots,$$

is orthonormalized numerically on (-1, 1) by the Gram-Schmidt procedure with respect to the inner product  $(g, h)_0$ . All computations, including the substitution in the series for  $R_0(x, y)$ , are carried out numerically.

We use  $B_I = D^{2I}/(2I)!$ ,  $D = \frac{1}{3}$  for numerical experiments.

K. Segeth: Smooth approximation and its application to some 1D problems. Proc. Conference Applications of Mathematics 2012. Prague, Institute of Mathematics of the AS CR 2012, 243–252.

# EXAMPLES OF BASIS FUNCTION SYSTEMS III: TRANSFORMED COMPLEX EXPONENTIAL FUNCTIONS WITH A SPECIAL CHOICE OF $B_l$

Numerical results in graphs are denoted by the cyan dashed line

We consider the complex exponential functions transformed to  $(-\infty, \infty)$ . In the definition of inner product, we put  $B_I = 0$  for all I with the exception of  $B_2 = 1$ . It means that we minimize the  $L^2$  norm of the second derivative of the interpolant z.

We arrive at  $R_2(x,y) = |x - y|^3$  and the function t has the form

$$t(x)=a_0+a_1x.$$

It is easy to find out that such a smooth approximation is, in fact, the well-known *cubic spline interpolation*.

## COMPUTATIONAL COMPARISON WITH CLASSICAL INTERPOLATION

# 0: EXACT SOLUTION

Numerical results in graphs are denoted by the red solid line

## IV: POLYNOMIAL INTERPOLATION

Numerical results in graphs are denoted by the blue dotted line

## V: RATIONAL INTERPOLATION

Numerical results in graphs are denoted by the magenta dash-dot line

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへ⊙

## SMOOTH INTERPOLATION OF A SMOOTH FUNCTION

The function

$$f(x) = \frac{1}{1+16x^2}$$

has "almost a pole" at x = 0. We constructed the smooth as well as classical interpolation in several both equidistant and nonequidistant grids.

ション ふぼう ふぼう ふほう うらの

The results for the equidistant grid with N = 5 follow. The rational interpolation is identical to the true function.

# SMOOTH INTERPOLATION OF A SMOOTH FUNCTION RESULT



~ ~ ~ ~

# SMOOTH INTERPOLATION OF A SMOOTH FUNCTION ERROR



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## SMOOTH INTERPOLATION OF A NONSMOOTH FUNCTION

The function

$$f(x) = 3(x+1)^2 + \ln((\frac{1}{10}x)^2 + 10^{-5}) + 1$$

has "almost a singularity" at x = 0. We constructed the smooth as well as classical interpolation in several both equidistant and nonequidistant grids.

The results for the equidistant grid with N = 5 follow except for the very inaccurate results obtained by the rational interpolation.

ション ふぼう ふぼう ふほう うらの

# SMOOTH INTERPOLATION OF A NONSMOOTH FUNCTION RESULT



୍ରର୍ତ

# SMOOTH INTERPOLATION OF A NONSMOOTH FUNCTION ERROR

