Effective Multiplication by Wavelet Matrix

Václav Finěk, Martina Šimůnková

Departments of Mathematics, Technical University of Liberec
PANM, June 7, 2012
(1) Problem and methods
(2) 1D problem
(3) Higher dimensional problem - design of the implementation

- Approximate evaluation of the right-hand side
- Data structures
- Preconditioning
- Approximate matrix multiplication
(1) Problem and methods
(2) 1D problem
(3) Higher dimensional problem - design of the implementation
- Approximate evaluation of the right-hand side
- Data structures
- Preconditioning
- Approximate matrix multiplication

Dirichlet problem

$$
\begin{aligned}
-\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+c u=f & \text { on } \Omega=(0,1)^{d} \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

Galerkin method with a wavelet basis

Preconditioning
with D be a diagonal of A.
Iteration process

Dirichlet problem

$$
\begin{aligned}
&-\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+c u=f \\
& \text { on } \Omega=(0,1)^{d} \\
& u=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

Galerkin method with a wavelet basis

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

Preconditioning

with D be a diagonal of A.
Iteration process

Dirichlet problem

$$
\begin{aligned}
-\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+c u=f & \text { on } \Omega=(0,1)^{d} \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

Galerkin method with a wavelet basis

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

Preconditioning

$$
A u=f \rightarrow\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)\left(D^{\frac{1}{2}} u\right)=D^{-\frac{1}{2}} f
$$

with D be a diagonal of A.
Iteration process

Dirichlet problem

$$
\begin{aligned}
-\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+c u & =f & & \text { on } \Omega=(0,1)^{d} \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Galerkin method with a wavelet basis

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

Preconditioning

$$
A u=f \rightarrow \quad\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)\left(D^{\frac{1}{2}} u\right)=D^{-\frac{1}{2}} f
$$

with D be a diagonal of A.
Iteration process

Dirichlet problem

$$
\begin{aligned}
-\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+c u & =f & & \text { on } \Omega=(0,1)^{d} \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Galerkin method with a wavelet basis

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

Preconditioning

$$
A u=f \rightarrow \quad\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)\left(D^{\frac{1}{2}} u\right)=D^{-\frac{1}{2}} f
$$

with D be a diagonal of A.
Iteration process

Dirichlet problem

$$
\begin{aligned}
-\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+c u=f & \text { on } \Omega=(0,1)^{d} \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

Galerkin method with a wavelet basis

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

Preconditioning

$$
A u=f \rightarrow \quad\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)\left(D^{\frac{1}{2}} u\right)=D^{-\frac{1}{2}} f
$$

with D be a diagonal of A.
Iteration process

$$
D^{\frac{1}{2}} u^{n+1}=D^{\frac{1}{2}} u^{n}+\omega\left(D^{-\frac{1}{2}} f-\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)\left(D^{\frac{1}{2}} u^{n}\right)\right)
$$

Dirichlet problem

$$
\begin{aligned}
-\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+c u & =f & & \text { on } \Omega=(0,1)^{d} \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Galerkin method with a wavelet basis

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

Preconditioning

$$
A u=f \rightarrow \quad\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)\left(D^{\frac{1}{2}} u\right)=D^{-\frac{1}{2}} f
$$

with D be a diagonal of A.
Iteration process

$$
u^{n+1}=u^{n}+\omega\left(D^{-1} f-D^{-1} A u^{n}\right)
$$

1D wavelet basis of quadratic splines, $N=2^{l}, l$ is a number of levels

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

higher dimensional basis (anisotrophic wavelet basis)
$\psi_{0}, \ldots, \psi_{7}$ are so called scaling functions

1D wavelet basis of quadratic splines, $N=2^{l}, l$ is a number of levels

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

higher dimensional basis (anisotrophic wavelet basis)

$$
\left\{\psi_{i_{1}} \times \psi_{i_{2}} \times \cdots \times \psi_{i_{d}}\right\}_{i_{1}, i_{2}, \ldots, i_{d}=0}^{N-1}
$$

1D wavelet basis of quadratic splines, $N=2^{l}, l$ is a number of levels

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

higher dimensional basis (anisotrophic wavelet basis)

$$
\left\{\psi_{i_{1}} \times \psi_{i_{2}} \times \cdots \times \psi_{i_{d}}\right\}_{i_{1}, i_{2}, \ldots, i_{d}=0}^{N-1}
$$

$\psi_{0}, \ldots, \psi_{7}$ are so called scaling functions

$$
\psi_{0}(x)=\varphi_{s c_{-} b d}(8 x), \quad \psi_{7}(x)=\varphi_{s c_{-} b d}(8(1-x))
$$

1D wavelet basis of quadratic splines, $N=2^{l}, l$ is a number of levels

$$
\left\{\psi_{i}\right\}_{i=0}^{N-1}
$$

higher dimensional basis (anisotrophic wavelet basis)

$$
\left\{\psi_{i_{1}} \times \psi_{i_{2}} \times \cdots \times \psi_{i_{d}}\right\}_{i_{1}, i_{2}, \ldots, i_{d}=0}^{N-1}
$$

$\psi_{0}, \ldots, \psi_{7}$ are so called scaling functions

$$
\text { for } i=1 . .6 \quad \psi_{i}(x)=\varphi_{\text {sc_in }}(8 x-i+1)
$$

ψ_{8}, \ldots are so called wavelets

we show graphs of so called $3 / 3$ biorthogonal wavelets

ψ_{8}, \ldots are so called wavelets we show graphs of so called $3 / 3$ biorthogonal wavelets
ψ_{8}, \ldots are so called wavelets we show graphs of so called $3 / 3$ biorthogonal wavelets

$$
\psi_{8}(x)=a_{0} \varphi_{s c_{-} b d}(16 x)+\sum_{i=0}^{7} a_{i} \varphi_{s c_{-} i n}(16 x-i)
$$

ψ_{8}, \ldots are so called wavelets we show graphs of so called $3 / 3$ biorthogonal wavelets

ψ_{8}, \ldots are so called wavelets we show graphs of so called $3 / 3$ biorthogonal wavelets

$$
\begin{aligned}
& \psi_{14}(x)=\psi_{9}(1-x) \\
& \psi_{15}(x)=\psi_{8}(1-x)
\end{aligned}
$$

$$
=\psi_{8}(2 x)
$$

$$
=\psi_{9}(2 x)
$$

$$
\psi_{k}(x)=\psi_{10}(2 x-k+18)
$$

$$
\psi_{30}(x)=\psi_{14}(2 x)
$$

$$
\psi_{31}(x)=\psi_{15}(2 x)
$$

$$
\begin{aligned}
\psi_{14}(x) & =\psi_{9}(1-x) \\
\psi_{15}(x) & =\psi_{8}(1-x) \\
\psi_{16}(x) & =\psi_{8}(2 x) \\
\psi_{17}(x) & =\psi_{9}(2 x) \\
\psi_{k}(x) & =\psi_{10}(2 x-k+18) \quad \text { for } k=18 . .29 \\
\psi_{30}(x) & =\psi_{14}(2 x) \\
\psi_{31}(x) & =\psi_{15}(2 x)
\end{aligned}
$$

$$
\begin{aligned}
\psi_{14}(x) & =\psi_{9}(1-x) \\
\psi_{15}(x) & =\psi_{8}(1-x) \\
\psi_{16}(x) & =\psi_{8}(2 x) \\
\psi_{17}(x) & =\psi_{9}(2 x) \\
\psi_{k}(x) & =\psi_{10}(2 x-k+18) \quad \text { for } k=18 . .29 \\
\psi_{30}(x) & =\psi_{14}(2 x) \\
\psi_{31}(x) & =\psi_{15}(2 x)
\end{aligned}
$$

Moment of a function f of n-th order is

$$
\int_{\mathbb{R}} x^{n} f(x) \mathrm{d} x
$$

Moment of a function f of n-th order is

$$
\int_{\mathbb{R}} x^{n} f(x) \mathrm{d} x
$$

For $n=0,1,2, i=8, \ldots$

$$
\int_{\mathbb{R}} x^{n} \psi_{i}(x) \mathrm{d} x=0 .
$$

Corollary:

Moment of a function f of n-th order is

$$
\int_{\mathbb{R}} x^{n} f(x) \mathrm{d} x
$$

For $n=0,1,2, i=8, \ldots$

$$
\int_{\mathbb{R}} x^{n} \psi_{i}(x) \mathrm{d} x=0
$$

Corollary: $\int \psi_{i}(x) \psi_{j}(x) \mathrm{d} x=0$.

Moment of a function f of n-th order is

$$
\int_{\mathbb{R}} x^{n} f(x) \mathrm{d} x
$$

For $n=0,1,2, i=8, \ldots$

$$
\int_{\mathbb{R}} x^{n} \psi_{i}(x) \mathrm{d} x=0
$$

Corollary: $\quad \int_{\mathbb{R}} \psi_{i}(x) \psi_{j}(x) \mathrm{d} x=a \int_{\left[x_{d},+\infty\right)}\left(x-x_{d}\right)^{2} \psi_{j}(x) \mathrm{d} x$.

Moment of a function f of n-th order is

$$
\int_{\mathbb{R}} x^{n} f(x) \mathrm{d} x
$$

For $n=0,1,2, i=8, \ldots$

$$
\int_{\mathbb{R}} x^{n} \psi_{i}(x) \mathrm{d} x=0
$$

Corollary: $\quad \int_{\mathbb{R}} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) \mathrm{d} x=2 a \int_{\left[x_{d},+\infty\right)}\left(x-x_{d}\right) \psi_{j}^{\prime}(x) \mathrm{d} x$.

(1) Problem and methods

(2) 1D problem

(3) Higher dimensional problem - design of the implementation

- Approximate evaluation of the right-hand side
- Data structures
- Preconditioning
- Approximate matrix multiplication

$$
d_{i j}=\int_{0}^{1} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) \mathrm{d} x \quad g_{i j}=\int_{0}^{1} \psi_{i}(x) \psi_{j}(x) \mathrm{d} x
$$

n is the number of discontinuities of a wavelet

n is the number of discontinuities of a wavelet

n is the number of discontinuities of a wavelet

$$
d_{i j}=\int_{0}^{1} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) \mathrm{d} x \quad g_{i j}=\int_{0}^{1} \psi_{i}(x) \psi_{j}(x) \mathrm{d} x
$$

k is the length of a wavelet,
n is the number of discontinuities of a wavelet

Theorem. Matrices D and G of the order $N=2^{n}$ have at most $0.5(15 k-5+k l-l) N$ number of nonzero coefficients.

(1) Problem and methods

(3) Higher dimensional problem - design of the implementation

- Approximate evaluation of the right-hand side
- Data structures
- Preconditioning
- Approximate matrix multiplication

Given the number of levels l and ε as an order of accuracy

$i_{d}=0 . .\left(2^{l}-1\right)$ we evaluate

Given the number of levels l and ε as an order of accuracy for $i_{1}, \ldots, i_{d}=0 . .\left(2^{l}-1\right)$ we evaluate

$$
f_{i_{1} \ldots i_{d}}=\int_{\operatorname{supp} \psi_{i_{1}} \times \cdots \times \operatorname{supp} \psi_{i_{d}}} f\left(x_{1}, \ldots, x_{d}\right) \psi_{i_{1}}\left(x_{1}\right) \ldots \psi_{i_{d}}\left(x_{d}\right) \mathrm{d} x
$$

Given the number of levels l and ε as an order of accuracy for $i_{1}, \ldots, i_{d}=0 . .\left(2^{l}-1\right)$ we evaluate

$$
f_{i_{1} \ldots i_{d}}=\int_{\operatorname{supp} \psi_{i_{1}} \times \cdots \times \operatorname{supp} \psi_{i_{d}}} f\left(x_{1}, \ldots, x_{d}\right) \psi_{i_{1}}\left(x_{1}\right) \ldots \psi_{i_{d}}\left(x_{d}\right) \mathrm{d} x
$$

by Simpson rule for two divisions

- $k=2^{5}$ and $2 k$ nodes at each of $\operatorname{supp} \psi_{i_{k}}, k=1$..d
- estimate error
- repeat $k \rightarrow 2 k$ until error $<\varepsilon$.

During evaluation of right-hand side we

- calculate $\|f\|_{l_{2}}$,
- sort f_{i} by heapsort (with limited heap size and merging them) sort them according their absolute value from smallest store them as a couple (value, index)
mallest values we put zero
- $\operatorname{sum} \longleftarrow 0, i \leftarrow 0$

0 sum \leftarrow sum $+v^{2}$?

- while sum

put c_{i} to a linked list, $i \leftarrow i+1$

During evaluation of right-hand side we

- calculate $\|f\|_{l_{2}}$,
- sort f_{i} by heapsort (with limited heap size and merging them) sort them according their absolute value from smallest store them as a couple (value, index)

Smallest values we put zero

- $\operatorname{sum} \longleftarrow 0, i \leftarrow 0$
- sume sum $+v^{2}$
- while sum $<\varepsilon^{2}\|f\|_{l_{2}}^{2}$
- while $i \leq$ maximal_value
put c_{i} to a linked list, $i \leftarrow i+1$

During evaluation of right-hand side we

- calculate $\|f\|_{l_{2}}$,
- sort f_{i} by heapsort (with limited heap size and merging them) sort them according their absolute value from smallest store them as a couple (value, index)
Smallest values we put zero
- sum $\leftarrow s u m+v_{i}^{2}$
- while sum < $\varepsilon^{2\|f\| \|_{l_{2}}}$
- while $i \leq$ maximal_value
put c_{i} to a linked list, $i \leftarrow i+1$

During evaluation of right-hand side we

- calculate $\|f\|_{l_{2}}$,
- sort f_{i} by heapsort (with limited heap size and merging them) sort them according their absolute value from smallest store them as a couple (value, index)
Smallest values we put zero
- sum $\leftarrow 0, i \leftarrow 0$
- sum $\leftarrow \operatorname{sum}+v_{i}^{2}$
- while sum $<\varepsilon^{2}\|f\|_{l_{2}}^{2}$ do $v_{i} \leftarrow 0, i \leftarrow i+1$, sum \leftarrow sum $+v_{i}^{2}$
- while $i \leq$ maximal_value
put c_{i} to a linked list, $i \leftarrow i+1$

We use 1D stifness matrix for multiplication. We store it in a relatively small structure (approximately 1000 elements).

Possibilities how to store right-hand side and iterations:

(2) To store them in blocks in d-dimensional arays. To store pointers to blocks in an aray of size l^{d} To store coefficients of nonzero elements of an iteration in a linked list.
© To store couples (index, value) in a smaller structure with index hashed.

We use 1D stifness matrix for multiplication. We store it in a relatively small structure (approximately 1000 elements).

Possibilities how to store right-hand side and iterations:
To store them in blocks in d-dimensional arays. To store pointers to blocks in an aray of size l^{d} To store coefficients of nonzero elements of an iteration in a linked list.
© To store couples (index, value) in a smaller structure with index hashed.

We use 1D stifness matrix for multiplication. We store it in a relatively small structure (approximately 1000 elements).

Possibilities how to store right-hand side and iterations:
(1) To store them in an associative $\mathrm{C}++$ container.
 hashed.

We use 1D stifness matrix for multiplication. We store it in a relatively small structure (approximately 1000 elements).

Possibilities how to store right-hand side and iterations:
(1) To store them in an associative $\mathrm{C}++$ container.
(2) To store them in blocks in d-dimensional arays. To store pointers to blocks in an aray of size l^{d}. To store coefficients of nonzero elements of an iteration in a linked list.
© To store couples (index, value) in a smaller structure with index hashed

We use 1D stifness matrix for multiplication. We store it in a relatively small structure (approximately 1000 elements).

Possibilities how to store right-hand side and iterations:
(1) To store them in an associative $C++$ container.
(2) To store them in blocks in d-dimensional arays. To store pointers to blocks in an aray of size l^{d}. To store coefficients of nonzero elements of an iteration in a linked list.
(3) To store couples (index, value) in a smaller structure with index hashed.

We normalize basis functions

$$
\int_{0}^{1}\left(\psi_{i}(x)\right)^{2} d x=1
$$

Diagonal element of the matrix (we display it for the dimension $d=3$)
is then

We store $d_{i i}$ for first two levels - scaling functions and first level of wavelets (16 elements). Others can be easily calculated - they grows 4 times from one to finer level.

We normalize basis functions

$$
\int_{0}^{1}\left(\psi_{i}(x)\right)^{2} \mathrm{~d} x=1
$$

Diagonal element of the matrix (we display it for the dimension $d=3$)

$$
D \times G \times G+G \times D \times G+G \times G \times D+c G \times G \times G
$$

is then

We store $d_{i i}$ for first two levels - scaling functions and first level of wavelets (16 elements). Others can be easily calculated - they grows 4 times from one to finer level.

We normalize basis functions

$$
\int_{0}^{1}\left(\psi_{i}(x)\right)^{2} \mathrm{~d} x=1
$$

Diagonal element of the matrix (we display it for the dimension $d=3$)

$$
D \times G \times G+G \times D \times G+G \times G \times D+c G \times G \times G
$$

is then

$$
a_{i_{1} i_{1} \ldots i_{d} i_{d}}=c+\sum_{k=1}^{d} d_{i_{d} i_{d}}
$$

We store $d_{i i}$ for first two levels - scaling functions and first level of wavelets (16 elements). Others can be easily calculated - they grows 4 times from one to finer level.

We normalize basis functions

$$
\int_{0}^{1}\left(\psi_{i}(x)\right)^{2} d x=1
$$

Diagonal element of the matrix (we display it for the dimension $d=3$)

$$
D \times G \times G+G \times D \times G+G \times G \times D+c G \times G \times G
$$

is then

$$
a_{i_{1} i_{1} \ldots i_{d} i_{d}}=c+\sum_{k=1}^{d} d_{i_{d} i_{d}}
$$

We store $d_{i i}$ for first two levels - scaling functions and first level of wavelets (16 elements). Others can be easily calculated - they grows 4 times from one to finer level.

Strategy: given ε as an order of accuracy multiply an element of a value v with blocks with elements $\geq \frac{\varepsilon}{|v|}$.

Blocks $B_{i j}$ we for now index by one-dimensional indeces
$i, j=0 . .\left(l^{d}-1\right)$ and we store $\max \left(B_{i j}\right)$ in two-dimensional array $\left[l^{d}\right]\left[l^{d}\right]$ - every row is sorted $-\operatorname{array}[i][0]$ is
$\max \left\{\max \left(B_{i j}\right): j=0 . .\left(l^{d}-1\right)\right\}$

Strategy: given ε as an order of accuracy multiply an element of a value v with blocks with elements $\geq \frac{\varepsilon}{|v|}$.

We evaluate max to every block (maximal absolute value of its elements) of matrices D and G before the iteration process starts. From them we calculate max for tenzor products of blocks.

Blocks $B_{i j}$ we for now index by one-dimensional indeces $i, j=0 . .\left(l^{d}-1\right)$ and we store $\max \left(B_{i j}\right)$ in two-dimensional $\operatorname{array}\left[l^{d}\right]\left[l^{d}\right]-$ every row is sorted $-\operatorname{array}[i][0]$ is
\square

Strategy: given ε as an order of accuracy multiply an element of a value v with blocks with elements $\geq \frac{\varepsilon}{|v|}$.

We evaluate max to every block (maximal absolute value of its elements) of matrices D and G before the iteration process starts. From them we calculate max for tenzor products of blocks.

Blocks $B_{i j}$ we for now index by one-dimensional indeces $i, j=0 . .\left(l^{d}-1\right)$ and we store $\max \left(B_{i j}\right)$ in two-dimensional $\operatorname{array}\left[l^{d}\right]\left[l^{d}\right]$ - every row is sorted $-\operatorname{array}[i][0]$ is $\max \left\{\max \left(B_{i j}\right): j=0 . .\left(l^{d}-1\right)\right\}$.

