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Problem and methods

Dirichlet problem

−
d

∑

i=1

∂2u

∂x2
i

+ cu = f on Ω = (0, 1)d

u = 0 on ∂Ω

Galerkin method with a wavelet basis

{ψi}
N−1
i=0

Preconditioning

Au = f → (D− 1

2AD− 1

2 )(D
1

2u) = D− 1

2 f

with D be a diagonal of A.
Iteration process
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Problem and methods

1D wavelet basis of quadratic splines, N = 2l, l is a number of levels

{ψi}
N−1
i=0

higher dimensional basis (anisotrophic wavelet basis)

{ψi1 × ψi2 × · · · × ψid}
N−1
i1,i2,...,id=0

ψ0, . . . , ψ7 are so called scaling functions
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{ψi1 × ψi2 × · · · × ψid}
N−1
i1,i2,...,id=0

ψ0, . . . , ψ7 are so called scaling functions

ψ0(x) = ϕsc_bd(8x), ψ7(x) = ϕsc_bd(8(1− x))
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higher dimensional basis (anisotrophic wavelet basis)

{ψi1 × ψi2 × · · · × ψid}
N−1
i1,i2,...,id=0

ψ0, . . . , ψ7 are so called scaling functions

for i = 1..6 ψi(x) = ϕsc_in(8x− i+ 1)
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Problem and methods

ψ8, . . . are so called wavelets
we show graphs of so called 3/3 biorthogonal wavelets

Václav Finěk, Martina Šimůnková (TUL)EffectiveMultiplication by Wavelet Matrix PANM, June 7, 2012 6 / 17



Problem and methods

ψ8, . . . are so called wavelets
we show graphs of so called 3/3 biorthogonal wavelets

Václav Finěk, Martina Šimůnková (TUL)EffectiveMultiplication by Wavelet Matrix PANM, June 7, 2012 6 / 17



Problem and methods

ψ8, . . . are so called wavelets
we show graphs of so called 3/3 biorthogonal wavelets

ψ8(x) = a0ϕsc_bd(16x) +

7
∑

i=0

aiϕsc_in(16x− i)
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Problem and methods

ψ8, . . . are so called wavelets
we show graphs of so called 3/3 biorthogonal wavelets

ψ9(x) = b0ϕsc_bd(16x) +

7
∑

i=0

biϕsc_in(16x− i)
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Problem and methods

ψ8, . . . are so called wavelets
we show graphs of so called 3/3 biorthogonal wavelets

ψk(x) =

9
∑

i=0

ciϕsc_in(16x− i− 2k) for k = 10..13
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Problem and methods

ψ14(x) = ψ9(1− x)

ψ15(x) = ψ8(1− x)

ψ16(x) = ψ8(2x)

ψ17(x) = ψ9(2x)

ψk(x) = ψ10(2x− k + 18) for k = 18..29

ψ30(x) = ψ14(2x)

ψ31(x) = ψ15(2x)
...
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Problem and methods

Moment of a function f of n-th order is
∫

R

xnf(x) dx

For n = 0, 1, 2, i = 8, . . .
∫

R

xnψi(x) dx = 0.

Corollary:
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∫
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∫

R

xnf(x) dx

For n = 0, 1, 2, i = 8, . . .
∫

R

xnψi(x) dx = 0.

Corollary:
∫

R
ψ′
i(x)ψ

′
j(x) dx = 2a

∫

[xd,+∞)
(x− xd)ψ

′
j(x) dx.

xd
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1D problem

1 Problem and methods

2 1D problem

3 Higher dimensional problem – design of the implementation
Approximate evaluation of the right-hand side
Data structures
Preconditioning
Approximate matrix multiplication

Václav Finěk, Martina Šimůnková (TUL)EffectiveMultiplication by Wavelet Matrix PANM, June 7, 2012 9 / 17



1D problem

dij =

∫ 1

0

ψ′
i(x)ψ

′
j(x) dx gij =

∫ 1

0

ψi(x)ψj(x) dx

k is the length of a wavelet,
n is the number of discontinuities of a wavelet
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1D problem

dij =

∫ 1

0

ψ′
i(x)ψ

′
j(x) dx gij =

∫ 1

0

ψi(x)ψj(x) dx

5

9

9

at most

9 per row

k is the length of a wavelet,
n is the number of discontinuities of a wavelet
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1D problem

dij =

∫ 1

0

ψ′
i(x)ψ

′
j(x) dx gij =

∫ 1

0

ψi(x)ψj(x) dx

2k−1

2k−1

2k − 1

at most

2k − 1 per row

3k−1

3k − 1

3k − 1

at most

3k − 1 per row

5k − 1

5k − 1

5k − 1

(k − 1)n (k − 1)n

(k − 1)n

k is the length of a wavelet,
n is the number of discontinuities of a wavelet
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1D problem

Theorem. Matrices D and G of the order N = 2n have at most
0.5(15k − 5 + kl − l)N number of nonzero coefficients.
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Higher dimensional problem – design of the implementation

1 Problem and methods

2 1D problem

3 Higher dimensional problem – design of the implementation
Approximate evaluation of the right-hand side
Data structures
Preconditioning
Approximate matrix multiplication
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Higher dimensional problem – design of the implementation Approximate evaluation of the right-hand side

Given the number of levels l and ε as an order of accuracy
for i1, . . . , id = 0..(2l − 1) we evaluate

fi1...id =

∫

suppψi1
×···×suppψi

d

f(x1, . . . , xd)ψi1(x1) . . . ψid(xd) dx

by Simpson rule for two divisions

k = 25 and 2k nodes at each of suppψik , k = 1..d

estimate error

repeat k → 2k until error < ε.
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Higher dimensional problem – design of the implementation Approximate evaluation of the right-hand side

During evaluation of right-hand side we

calculate ‖f‖l2,

sort fi by heapsort (with limited heap size and merging them)
sort them according their absolute value from smallest
store them as a couple (value, index)

Smallest values we put zero

sum← 0, i← 0

sum← sum+ v2
i

while sum < ε2‖f‖2l2
do vi ← 0, i← i+ 1, sum← sum+ v2

i

while i ≤ maximal_value
put ci to a linked list, i← i+ 1
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Higher dimensional problem – design of the implementation Data structures

We use 1D stifness matrix for multiplication. We store it in a
relatively small structure (approximately 1000 elements).

Possibilities how to store right-hand side and iterations:
1 To store them in an associative C++ container.
2 To store them in blocks in d-dimensional arays.

To store pointers to blocks in an aray of size ld.
To store coefficients of nonzero elements of an iteration in a
linked list.

3 To store couples (index, value) in a smaller structure with index
hashed.
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Higher dimensional problem – design of the implementation Preconditioning

We normalize basis functions
∫ 1

0

(ψi(x))
2 dx = 1

Diagonal element of the matrix (we display it for the dimension
d = 3)

D ×G×G + G×D ×G + G×G×D + cG×G×G

is then

ai1i1...idid = c +

d
∑

k=1

didid

We store dii for first two levels – scaling functions and first level of
wavelets (16 elements). Others can be easily calculated – they grows
4 times from one to finer level.

Václav Finěk, Martina Šimůnková (TUL)EffectiveMultiplication by Wavelet Matrix PANM, June 7, 2012 16 / 17



Higher dimensional problem – design of the implementation Preconditioning

We normalize basis functions
∫ 1

0

(ψi(x))
2 dx = 1

Diagonal element of the matrix (we display it for the dimension
d = 3)

D ×G×G + G×D ×G + G×G×D + cG×G×G

is then

ai1i1...idid = c +

d
∑

k=1

didid

We store dii for first two levels – scaling functions and first level of
wavelets (16 elements). Others can be easily calculated – they grows
4 times from one to finer level.
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Higher dimensional problem – design of the implementation Approximate matrix multiplication

Strategy: given ε as an order of accuracy
multiply an element of a value v with blocks with elements ≥ ε

|v|
.

We evaluate max to every block (maximal absolute value of its
elements) of matrices D and G before the iteration process starts.
From them we calculate max for tenzor products of blocks.

Blocks Bij we for now index by one-dimensional indeces
i, j = 0..(ld − 1) and we store max(Bij) in two-dimensional
array[ld][ld] – every row is sorted – array[i][0] is
max{max(Bij) : j = 0..(ld − 1)}.
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